Skip to main content

Preclinical SPECT and SPECT/CT

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

The molecular processes underlying carcinogenesis and malignant spread are the foundation of future drug development for the treatment of cancer. Understanding these processes requires study of the interaction of complex biologic systems in a way that spatially and temporally recapitulates that seen in humans. Likewise, once an anticancer agent is developed, its intended antitumor action and its unintended side-effects must be studied in a rigorous and reproducible manner prior to its introduction into the clinic, a process that can benefit from methods that elucidate specific molecular processes and that can be performed serially. Recent advances in small-animal models of cancer, radiochemistry of single photon emitting radionuclides, single photon emission tomography systems, and image reconstruction techniques have set the stage for an ever-increasing use of SPECT and SPECT/CT in preclinical oncology-related applications. Several of these advances as well as several specific applications in oncology are highlighted and areas needing further improvement are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ Jr (2001a) Biological indicators for the identification of ionizing radiation exposure in humans. Expert Rev Mol Diagn 1:211–219

    Article  PubMed  CAS  Google Scholar 

  • Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ Jr (2001b) Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res 156:657–661

    Article  PubMed  CAS  Google Scholar 

  • Andersson H et al (2009) Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2—a phase I study. J Nucl Med 50:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Baranowska-Kortylewicz J et al (2005) Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Cancer Res 65:7824–7831

    PubMed  CAS  Google Scholar 

  • Beck BH et al (2010) Adoptively transferred ex vivo expanded gammadelta-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer. Breast Cancer Res Treat 122:135–144

    Article  PubMed  CAS  Google Scholar 

  • Beekman FJ, Vastenhouw B (2004) Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49:4579–4592

    Article  PubMed  Google Scholar 

  • Beekman FJ et al (2005) U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 46:1194–1200

    PubMed  Google Scholar 

  • Boersma HH et al (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050

    PubMed  CAS  Google Scholar 

  • Bolton AE, Hunter WM (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 133:529–539

    PubMed  CAS  Google Scholar 

  • Bombardieri E et al (2010) Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging 54:3–15

    PubMed  CAS  Google Scholar 

  • Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3:149–158

    Article  PubMed  Google Scholar 

  • Buckle T, van Leeuwen FW (2010) Validation of intratracheal instillation of lung tumour cells in mice using single photon emission computed tomography/computed tomography imaging. Lab Anim 44:40–45

    Article  PubMed  CAS  Google Scholar 

  • Sausville EA, Burger AM (2006) Contributions of human tumor xenografts to anticancer drug development. Cancer Res 66:3351–3354 (discussion 3354)

    Google Scholar 

  • Carcieri S et al (2006) Integrated imaging now: PET, SPECT, and CT imaging in small animals J Nucl Med 47 (S1): 399

    Google Scholar 

  • Carlson SK, Classic KL, Bender CE, Russell SJ (2007) Small animal absorbed radiation dose from serial micro-computed tomography imaging. Mol Imaging Biol 9:78–82

    Article  PubMed  Google Scholar 

  • Carlson SK et al (2009) Quantitative molecular imaging of viral therapy for pancreatic cancer using an engineered measles virus expressing the sodium-iodide symporter reporter gene. AJR Am J Roentgenol 192:279–287

    Article  PubMed  Google Scholar 

  • Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 25:638–643

    Article  Google Scholar 

  • Chang YJ et al (2010) Therapeutic efficacy and microSPECT/CT imaging of 188Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model. Nucl Med Biol 37:95–104

    Article  PubMed  CAS  Google Scholar 

  • Chapman JD et al (1996) Prediction of tumour hypoxia and radioresistance with nuclear medicine markers. Br J Cancer Suppl 27:S204–S208

    PubMed  CAS  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) Breast cancer stem cells: tools and models to rely on. BMC Cancer 9:202

    Article  PubMed  Google Scholar 

  • Chen KT, Lee TW, Lo JM (2009) In vivo examination of 188Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer. Nucl Med Biol 36:355–361

    Article  PubMed  CAS  Google Scholar 

  • Chen R et al (2010) Multimodality imaging of gene transfer with a receptor-based reporter gene. J Nucl Med 51:1456–1463

    Article  PubMed  CAS  Google Scholar 

  • Chisholm EJ et al (2009) Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res 69:2655–2662

    Article  PubMed  CAS  Google Scholar 

  • Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF (2006) A method of image registration for small animal, multi-modality imaging. Phys Med Biol 51:379–390

    Article  PubMed  Google Scholar 

  • Colby LA, Morenko BJ (2004) Clinical considerations in rodent bioimaging. Comp Med 54:623–630

    PubMed  CAS  Google Scholar 

  • Cowey S et al (2007) Breast cancer metastasis to bone: evaluation of bioluminescent imaging and microSPECT/CT for detecting bone metastasis in immunodeficient mice. Clin Exp Metastasis 24:389–401

    Article  PubMed  CAS  Google Scholar 

  • de Jong M, Maina T (2010) Of mice and humans: are they the same?—Implications in cancer translational research. J Nucl Med 51:501–504

    Article  PubMed  Google Scholar 

  • Dennis MS et al (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261

    Article  PubMed  CAS  Google Scholar 

  • Dewaraja YK, Koral KF, Fessler JA (2010) Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging. Phys Med Biol 55:2523–2539

    Article  PubMed  Google Scholar 

  • Difilippo FP (2008) Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners. Phys Med Biol 53:4185–4201

    Article  PubMed  Google Scholar 

  • Dijkgraaf I, Beer AJ, Wester HJ (2009) Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci 14:887–899

    Article  PubMed  CAS  Google Scholar 

  • Edwards WB et al (2009) Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide. Mol Imaging 8:101–110

    PubMed  CAS  Google Scholar 

  • Eyles J et al (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120:2030–2039

    Article  PubMed  CAS  Google Scholar 

  • Fasano J, Muggia F (2009) Breast cancer arising in a BRCA-mutated background: therapeutic implications from an animal model and drug development. Ann Oncol 20:609–614

    Article  PubMed  CAS  Google Scholar 

  • Figueroa SD, Winkelmann CT, Miller HW, Volkert WA, Hoffman TJ (2008) TLD assessment of mouse dosimetry during microCT imaging. Med Phys 35:3866–3874

    Article  PubMed  Google Scholar 

  • Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49:1651–1663

    Article  PubMed  Google Scholar 

  • Fu DX et al (2007) Virus-associated tumor imaging by induction of viral gene expression. Clin Cancer Res 13:1453–1458

    Article  PubMed  CAS  Google Scholar 

  • Funk T, Sun M, Hasegawa BH (2004) Radiation dose estimate in small animal SPECT and PET. Med Phys 31:2680–2686

    Article  PubMed  CAS  Google Scholar 

  • Fuster D et al (2003) Tetrofosmin as predictors of tumour response. Q J Nucl Med 47:58–62

    PubMed  CAS  Google Scholar 

  • Gooden CS et al (1995) Direct technetium-99m labeling of three anticancer monoclonal antibodies: stability, pharmacokinetics and imaging. J Nucl Med 36:842–849

    PubMed  CAS  Google Scholar 

  • Habraken JB et al (2001) Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 42:1863–1869

    PubMed  CAS  Google Scholar 

  • Hanahan D (1989) Transgenic mice as probes into complex systems. Science 246:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • He J et al (2010) Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single-chain antibody fragment. J Nucl Med 51:427–432

    Article  PubMed  Google Scholar 

  • Heskamp S et al (2010) ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model. J Nucl Med 51:1565–1572

    Article  PubMed  Google Scholar 

  • Hesterman JY, Kupinski MA, Furenlid LR, Wilson DW, Barrett HH (2007) The multi-module, multi-resolution system (M3R): a novel small-animal SPECT system. Med Phys 34:987–993

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49:17–26

    PubMed  CAS  Google Scholar 

  • Hoeben BA et al (2011) Radiolabeled cetuximab: Dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model. Int J Cancer 129:870–878

    Google Scholar 

  • Hwang AB Taylor CC VanBrocklin HF Dae MW & Hasegawa BH (2006) Attenuation correction of small animal SPECT images acquired with 125I-iodorotenone. IEEE Trans Nucl Sci 53(3):1213–1219

    Google Scholar 

  • Hwang AB, Hasegawa BH (2005) Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 32:2799–2804

    Article  PubMed  Google Scholar 

  • Hwang AB, Franc BL, Gullberg GT, Hasegawa BH (2008) Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol 53:2233–2252

    Article  PubMed  Google Scholar 

  • Iyer AK et al (2011) The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials 32:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • John E, Thakur ML, Wilder S, Alauddin MM, Epstein AL (1994) Technetium-99m-labeled monoclonal antibodies: influence of technetium-99m binding sites. J Nucl Med 35:876–881

    PubMed  CAS  Google Scholar 

  • Joyal JL et al (2010) Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Res 70:4045–4053

    Article  PubMed  CAS  Google Scholar 

  • Kastis GA et al (2004) Compact CT/SPECT small-animal imaging system. IEEE Trans Nucl Sci 51:63–67

    Article  Google Scholar 

  • Kersemans V et al (2011) Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med 52:1827–1833

    Article  PubMed  Google Scholar 

  • Kim EM et al (2004) Monitoring the effect of PEGylation on polyethylenimine in vivo using nuclear imaging technique. Nucl Med Biol 31:781–784

    Article  PubMed  CAS  Google Scholar 

  • King R et al (2009) 99mTc-HYNIC-Gastrin peptides: assisted coordination of 99mTc by amino acid side chains results in improved performance both in vitro and in vivo. J Nucl Med 50:591–598

    Article  PubMed  CAS  Google Scholar 

  • Kortylewicz ZP, Nearman J, Baranowska-Kortylewicz J (2009) Radiolabeled 5-iodo-3′-O-(17beta-succinyl-5alpha-androstan-3-one)-2′-deoxyuridine and its 5′-monophosphate for imaging and therapy of androgen receptor-positive cancers: synthesis and biological evaluation. J Med Chem 52:5124–5143

    Article  PubMed  CAS  Google Scholar 

  • Lanari C et al (2009) The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer 16:333–350

    Article  PubMed  CAS  Google Scholar 

  • Li Y et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100:15853–15858

    Article  PubMed  CAS  Google Scholar 

  • Liu IH et al (2010) Multimodality imaging and preclinical evaluation of 177Lu-AMBA for human prostate tumours in a murine model. Anticancer Res 30:4039–4048

    PubMed  Google Scholar 

  • Loudos G, Kagadis GC, Psimadas D (2011) Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol 78:287–295

    Article  PubMed  Google Scholar 

  • Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48:661–673

    Article  PubMed  Google Scholar 

  • Mamede M et al (2004) Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin-dendrimer complex. J Control Release 95:133–141

    Article  PubMed  CAS  Google Scholar 

  • Mardirossian G et al (1997) In vivo hybridization of technetium-99m-labeled peptide nucleic acid (PNA). J Nucl Med 38:907–913

    PubMed  CAS  Google Scholar 

  • Meenakshi A, Ganesh V, Suresh Kumar R, Siva Kumar N (2003) Radioimmuno targetting 99mtechnetium labeled anti-epidermal growth factor receptor monoclonal antibodies in experimental tumor models. Q J Nucl Med 47:139–144

    Google Scholar 

  • Melis M et al (2010a) Dynamic and static small-animal SPECT in rats for monitoring renal function after 177Lu-labeled Tyr3-octreotate radionuclide therapy. J Nucl Med 51:1962–1968

    Article  PubMed  CAS  Google Scholar 

  • Melis M et al (2010b) Nephrotoxicity in mice after repeated imaging using 111In-labeled peptides. J Nucl Med 51:973–977

    Article  PubMed  CAS  Google Scholar 

  • Merron A et al (2010) Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours. Eur J Nucl Med Mol Imaging 37:1377–1385

    Article  PubMed  Google Scholar 

  • Milagre C et al (2010) A mouse model of melanoma driven by oncogenic KRAS. Cancer Res 70:5549–5557

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SA et al (2010) Insertion of a lysosomal enzyme cleavage site into the sequence of a radiolabeled neuropeptide influences cell trafficking in vitro and in vivo. Cancer Biother Radiopharm 25:89–95

    Article  PubMed  Google Scholar 

  • Ni Y et al (2009) Tumor models and specific contrast agents for small animal imaging in oncology. Methods 48:125–138

    Article  PubMed  CAS  Google Scholar 

  • Oliver PG et al (2008) Treatment of human colon cancer xenografts with TRA-8 anti-death receptor 5 antibody alone or in combination with CPT-11. Clin Cancer Res 14:2180–2189

    Article  PubMed  CAS  Google Scholar 

  • Palmieri D et al (2006) Brain metastases of breast cancer. Breast Dis 26:139–147

    PubMed  CAS  Google Scholar 

  • Peerlinck I et al (2009) Targeted radionuclide therapy using a Wnt-targeted replicating adenovirus encoding the Na/I symporter. Clin Cancer Res 15:6595–6601

    Article  PubMed  CAS  Google Scholar 

  • Pomper MG et al (2009) Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res 19:370–379

    Article  PubMed  CAS  Google Scholar 

  • Ray GL et al (2009) Preclinical evaluation of a monoclonal antibody targeting the epidermal growth factor receptor as a radioimmunodiagnostic and radioimmunotherapeutic agent. Br J Pharmacol 157:1541–1548

    Article  PubMed  CAS  Google Scholar 

  • Schillaci O, Spanu A, Madeddu G (2005) [99mTc]sestamibi and [99mTc]tetrofosmin in oncology: SPET and fusion imaging in lung cancer, malignant lymphomas and brain tumors. Q J Nucl Med Mol Imaging 49:133–144

    PubMed  CAS  Google Scholar 

  • Sosabowski JK et al (2009) Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide. J Nucl Med 50:2082–2089

    Article  PubMed  CAS  Google Scholar 

  • Stephenson KA et al (2004) A new strategy for the preparation of peptide-targeted radiopharmaceuticals based on an fmoc-lysine-derived single amino acid chelate (SAAC). automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)3)+]G. Bioconjug Chem 15:128–136

    Article  PubMed  CAS  Google Scholar 

  • Stolin A et al (2005) In: Yu B (ed) IEEE Nuclear Science Symposium Conference Record. Fajardo, Puerto Rico, pp 2183–2186

    Google Scholar 

  • Takahashi T, Watanabe S (2001) Recent Progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci 48:950–959

    Google Scholar 

  • Uchida E et al (2008) Experimental pancreatic cancer model using PGHAM-1 cells: characteristics and experimental therapeutic trials. J Nippon Med Sch 75:325–331

    Article  PubMed  CAS  Google Scholar 

  • Umeda IO et al (2012) High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging. Ann Nucl Med 26:67–76

    Article  PubMed  Google Scholar 

  • van der Have F et al (2009) U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 50:599–605

    Article  PubMed  Google Scholar 

  • van Weerden WM, Bangma C, de Wit R (2009) Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer. Br J Cancer 100:13–18

    Article  PubMed  Google Scholar 

  • Vangestel C et al (2011) In vivo imaging of apoptosis in oncoloty: an update. Mol Imaging 10:340–358

    PubMed  CAS  Google Scholar 

  • Vanhove C, Defrise M, Bossuyt A, Lahoutte T (2011) Improved quantification in multiple-pinhole SPECT by anatomy-based reconstruction using microCT information. Eur J Nucl Med Mol Imaging 38:153–165

    Article  PubMed  Google Scholar 

  • Vastenhouw B, Beekman F (2007) Submillimeter total-body murine imaging with U-SPECT-I. J Nucl Med 48:487–493

    PubMed  Google Scholar 

  • Verhaar MJ et al (1996) Technetium-99m radiolabeling using a phage-derived single-chain Fv with a C-terminal cysteine. J Nucl Med 37:868–872

    PubMed  CAS  Google Scholar 

  • Virzi F et al (1991) New indium-111 labeled biotin derivatives for improved immunotargeting. Int J Rad Appl Instrum B 18:719–726

    PubMed  CAS  Google Scholar 

  • Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  • Wang Y et al (2005) An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest 85:1392–1404

    Article  PubMed  Google Scholar 

  • Weisenberger AG et al (2006) in IEEE Nuclear Science Symposium Conference Record pp 3000–3003

    Google Scholar 

  • Weisenberger AG et al (2005) In: Kupinski MA, Barrett HH (eds) Small-animal SPECT imaging. Springer, New York, pp 239–242

    Google Scholar 

  • Weisenberger AG et al (2003) SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50:74–79

    Article  Google Scholar 

  • Workman P et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577

    Article  PubMed  CAS  Google Scholar 

  • Wu C et al (2010) Absolute quantitative total-body small-animal SPECT with focusing pinholes. Eur J Nucl Med Mol Imaging 37:2127–2135

    Article  PubMed  Google Scholar 

  • Yang S et al (2009) Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by 99mTc-MDP bone scintigraphy. Nucl Med Biol 36:313–321

    Article  PubMed  CAS  Google Scholar 

  • Yu M et al (2010) Study on biodistribution and imaging of radioiodinated arginine-arginine-leucine peptide in nude mice bearing human prostate carcinoma. Ann Nucl Med 24:13–19

    Article  PubMed  CAS  Google Scholar 

  • Zhau HE, Li CL, Chung LW (2000) Establishment of human prostate carcinoma skeletal metastasis models. Cancer 88:2995–3001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Franc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seo, Y., Jiang, H., Franc, B.L. (2013). Preclinical SPECT and SPECT/CT. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics