Skip to main content

Optical Imaging of Breast Tumors and of Gastrointestinal Cancer by Laser-Induced Fluorescence

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

Optical imaging offers a high potential for noninvasive detection of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. We review recent developments in the detection of breast cancer in humans by fluorescent contrast agents. So far, the unspecific contrast agents indocyanine green (ICG) and omocyanine have been applied, whereas molecular probes for direct targeted imaging of this disease are still in preclinical research. We discuss recent improvements in the differentiation of malignant and benign lesions with ICG based on its enhanced extravasation in breast cancer. Whereas fluorescence imaging in thick tissue layers is hampered by strong light scattering, tissue surfaces can be investigated with high spatial resolution. As an example for superficial tumors, lesions of the gastrointestinal tract (GI) are discussed. In these investigations, protoporphyrin IX is used as a tumor-specific (due to its strong enhancement in tumor cells) target for spectroscopic identification and imaging. We present a time-gated method for fluorescence imaging and spectroscopy with strong suppression of tissue autofluorescence and show results on patients with Barrett′s esophagus and with colitis ulcerosa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baumgartner R, Huber RM, Schulz H et al (1996) Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol, B 36:169–174

    Article  CAS  Google Scholar 

  • Becker A, Hessenius C, Licha K et al (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnol 19:327–331

    Article  CAS  Google Scholar 

  • Betz CS, Stepp H, Janda P et al (2002) A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int J Cancer 97:245–252

    Article  PubMed  CAS  Google Scholar 

  • Braun-Falco O, Landthaler M (1990) Das maligne Melanom der Haut. Dt Ärztebl 87:933–936

    Google Scholar 

  • Bremer C, Ntziachristos V, Weitkamp B et al (2005) Optical imaging of spontaneous breast tumors using protease sensing ‘smart’ optical probes. Invest Radiol 40:321–327

    Article  PubMed  CAS  Google Scholar 

  • Cauberg EC, de Bruin DM, Faber DJ et al (2009) A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur Urol 56:287–296

    Article  PubMed  Google Scholar 

  • Corlu A, Choe R, Durduran T et al (2007) Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Expr 15:6696–6716

    Article  Google Scholar 

  • Cubeddu R, Pifferi A, Taroni P et al (1999) Fluorescence lifetime imaging: an application to the detection of skin tumors. IEEE J Sel Top Quant Electron 5:923–929

    Article  CAS  Google Scholar 

  • Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365

    PubMed  Google Scholar 

  • Ebert B, Sukowski U, Grosenick D et al (2001) Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments. J Biomed Opt 6:134–140

    Article  PubMed  CAS  Google Scholar 

  • Ebert B, Riefke B, Sukowski U et al. (2011) Cyanine dyes as contrast agents for near-infrared imaging in vivo: acute tolerance, pharmacokinetics, and fluorescence imaging. J Biomed Opt 16:066003-1-9

    Google Scholar 

  • Enfield LC, Gibson AP, Everdell NL et al (2007) Three-dimensional time-resolved optical mammography of the uncompressed breast. Appl Opt 46:3628–3638

    Article  PubMed  Google Scholar 

  • Feng Y, Jeong EK, Mohs AM et al (2008) Characterization of tumor angiogenesis with dynamic contrast enhanced magnetic resonance imaging and biodegradable macromolecular contrast agents in mice. Magn Reson Med 60:1347–1352

    Article  PubMed  Google Scholar 

  • Fischer T, Ebert B, Voigt J et al (2010) Detection of rheumatoid arthritis using non-specific contrast enhanced fluorescence imaging. Acad Radiol 17:375–381

    Article  PubMed  Google Scholar 

  • Floery D, Helbich TH, Riedl CC et al (2005) Characterization of benign and malignant breast lesions with computed tomography laser mammography (CTLM): initial experience. Invest Radiol 40:328–335

    Article  PubMed  Google Scholar 

  • Fusco V, Ebert B, Weber-Eibel J et al (2012) Cancer prevention in ulcerative colitis: long-term outcome following fluorescence-guided colonoscopy. Inflamm Bowel Dis 18:489–495

    Article  PubMed  Google Scholar 

  • Grosenick D, Moesta KT, Möller M et al (2005) Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients. Phys Med Biol 50:2429–2449

    Article  PubMed  Google Scholar 

  • Grosenick D, Hagen A, Steinkellner O et al (2011) A multichannel time-domain scanning fluorescence mammograph: Performance assessment and first in vivo results. Rev Sci Instrum 82:024302

    Article  PubMed  Google Scholar 

  • Hagen A, Grosenick D, Macdonald R et al (2009) Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions. Opt Expr 17:17016–17033

    Article  CAS  Google Scholar 

  • Hautmann H, Pichler JP, Stepp H et al (2007) In vivo kinetics of inhaled 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in bronchial tissue. Respir Res 8:1–7

    Article  Google Scholar 

  • Hurlstone DP, Kiesslich R, Thomson M et al (2008) Confocal chromoscopic endomicroscopy is superior to chromoscopy alone for the detection and characterisation of intraepithelial neoplasia in chronic ulcerative colitis. Gut 57:196–204

    Article  PubMed  CAS  Google Scholar 

  • Intes X, Ripoll J, Chen Y et al (2003) In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med Phys 30:1039–1047

    Article  PubMed  Google Scholar 

  • Liebert A, Wabnitz H, Obrig H et al (2006) Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31:600–608

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Chen K, Martin M et al (2007) Development of a synchronous fluorescence imaging system and data analysis methods. Opt Express 15:12583–12594

    Article  PubMed  Google Scholar 

  • Kemmner W, Wan K, Rüttinger S et al (2008) Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB J 22:500–509

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release 65:271–284

    Article  CAS  Google Scholar 

  • Mahmood U (2004) Near infrared optical applications in molecular imaging. Earlier, more accurate assessment of disease presence, disease course, and efficacy of disease treatment. IEEE Eng Med Biol Mag 23:58–66

    Article  PubMed  Google Scholar 

  • Moesta KT, Ebert B, Rinneberg H et al (1997) Techniken zur Erkennung minimal residueller Erkrankungen—Fluoreszenzdiagnostik. Der Onkologe 3:422–428

    Article  Google Scholar 

  • Moesta KT, Ebert B, Handke T et al (2000) Fluorescence as a concept in colorectal lymph node diagnosis. Recent Results Cancer Res 157:293–304

    Article  PubMed  CAS  Google Scholar 

  • Moesta KT, Ebert B, Handke T et al (2001) Protoporphyrin IX occurs naturally in colorectal cancers and their metastases. Cancer Res 61:991–999

    PubMed  CAS  Google Scholar 

  • Ntziachristos V, Yodh AG, Schnall M et al (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 97:2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Ortner M-AEJ, Ebert B, Hein E et al (2003) Time gated fluorescence spectroscopy in Barrett′s esophagus. Gut 52:28–33

    Article  PubMed  Google Scholar 

  • Ortner M-AEJ, Fusco V, Ebert B et al (2010) Time-gated fluorescence spectroscopy improves endoscopic detection of low-grade dysplasia in ulcerative colitis. Gastrointest Endosc 71:312–318

    Article  PubMed  Google Scholar 

  • Panjehpour M, Overholt BF, Vo-Dinh T et al (1996) Endoscopic fluorescence detection of high-grade dysplasia in Barrett’s esophagus. Gastroenterology 111:93–101

    Article  PubMed  CAS  Google Scholar 

  • Perlitz C, Licha K, Scholle FD et al (2005) Comparison of two tricarbocyanine-based dyes for fluorescence optical imaging. J Fluoresc 15:443–454

    Article  PubMed  CAS  Google Scholar 

  • Poellinger A, Burock S, Grosenick D et al (2011) Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study. Radiology 258:409–416

    Article  PubMed  Google Scholar 

  • Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606

    Article  PubMed  CAS  Google Scholar 

  • Rinneberg H, Grosenick D, Moesta KT et al (2005) Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo. Technol Cancer Res Treat 4:483–496

    PubMed  Google Scholar 

  • Rinneberg H, Grosenick D, Moesta KT et al (2008) Detection and characterization of breast tumors by time-domain scanning optical mammography. Opto-Electron Rev 16:147–162

    Article  CAS  Google Scholar 

  • Rubin DT, Rothe JA, Hetzel JT et al (2007) Are dysplasia and colorectal cancer endoscopically visible in patients with ulcerative colitis? Gastrointest Endosc 65:998–1004

    Article  PubMed  Google Scholar 

  • Rutter M, Saunders B, Wilkinson K et al (2004) Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126:451–459

    Article  PubMed  Google Scholar 

  • Taroni P, Torricelli A, Spinelli L et al (2005) Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Phys Med Biol 50:2469–2488

    Article  PubMed  Google Scholar 

  • Van de Ven S, Wiethoff A, Nielsen T et al (2010) A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 12:343–348

    Article  PubMed  Google Scholar 

  • Wagnieres G, Hadjur C, Grosjean P et al (1998) Clinical evaluation of the cutaneous phototoxicity of 5,10,15,20-tetra(m-hydroxyphenyl)chlorin. Photochem Photobiol 68:382–387

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ebert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebert, B., Grosenick, D. (2013). Optical Imaging of Breast Tumors and of Gastrointestinal Cancer by Laser-Induced Fluorescence. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics