Skip to main content

Applications of Osmium and Iridium as Biogeochemical Tracers in the Environment

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Osmium (Os) and Iridium (Ir) and are among the rarest elements on the surface of the earth and ones whose applications in modern industry are quite limited. However, their environmental burden has been increasing as they occur in nature with other platinum group elements, which have a wide variety of industrial, chemical, electrical and pharmaceutical applications. This review traces the development of the analytical techniques used to precisely measure Os and Ir concentrations and Os isotope composition in the environmental samples from their roots in geochemical and cosmochemical investigations. We then examine the distribution of Os and Ir in natural samples and review recent literature applying these elements as biogeochemical tracers. The primary environmental applications of Os and Ir arise from the fact that these elements are extremely rare on the surface of the earth and their introduction into the environment leads to an increase in their concentration in surface materials. In addition, a unique isotope fingerprint is present for Os introduced into the environment in that it comes from ores mined primarily in South Africa and Russia. In particular, we examine studies where (a) Os isotopes have been utilized to track the dispersal of platinum group elements from automobile catalysts and also to assess dispersal of Os itself and (b) Ir has been introduced as an intentional tracer to evaluate soot contribution from burning of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abisheva ZS, Zagorognyaya AN, Bukurov TN (2001) Recovery of radiogenic osmium-187 from sulfide copper ores in Kazakhstan. Platinum Met Rev 45:132–135

    Google Scholar 

  • Ahmed AH, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineralog Petrol 143:263–278

    Google Scholar 

  • Ahmed AH, Arai S, Abdel-Aziz YM et al (2009) Platinum-group elements distribution and spinel composition in podiform chromitites and associated rocks from the upper mantle section of the neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. J Afr Earth Sci 55:92–104

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F et al (1980) Extraterrestrial cause for the Cretaceous-tertiary extinction – experimental results and theoretical interpretation. Science 208:1095–1108

    Google Scholar 

  • Anbar AD (1996) I. Rhenium and Iridium in natural waters. II. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity. III. CO2 stability and heterogeneous chemistry in the atmosphere of Mars. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena

    Google Scholar 

  • Anbar AD, Wasserburg GJ, Papanastassiou DA et al (1996) Iridium in natural waters. Science 273:1524–1528

    Google Scholar 

  • Anbar AD, Papanastassiou DA, Wasserburg GJ (1997) Determination of iridium in natural waters by clean chemical extraction and negative thermal ionization mass spectrometry. Anal Chem 69:2444–2450

    Google Scholar 

  • Barbante C, Veysseyre A, Ferrari C et al (2001) Greenland snow evidence of large scale atmospheric contamination for platinum, palladium, and rhodium. Environ Sci Technol 35:835–839

    Google Scholar 

  • Barefoot RR, Van Loon JC (1999) Recent advances in the determination of the platinum group elements and gold. Talanta 49:1–14

    Google Scholar 

  • Barker JL, Anders E (1968) Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments. Geochim Cosmochim Acta 32:627

    Google Scholar 

  • Bate GL, Huizenga JR (1963) Abundances of ruthenium, osmium and uranium in some cosmic and terrestrial sources. Geochim Cosmochim Acta 27:345–360

    Google Scholar 

  • Birck JL, Roy Barman M, Capmas F (1997) Re-Os isotopic measurements at the femtomole level in natural samples. Geostandards Newsl 20:19–27

    Google Scholar 

  • Büchl A, Brugmann G, Batanova VG (2004) Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chem Geol 208:217–232

    Google Scholar 

  • Burke T, Fagliano J, Goldoft M et al (1991) Chromite ore processing residue in Hudson County, New-Jersey. Environ Health Perspect 92:131–137

    Google Scholar 

  • Burton KW, Gannoun A, Parkinson IJ (2010) Climate driven glacial-interglacial variations in the osmium isotope composition of seawater recorded by planktic foraminifera. Earth Planet Sci Lett 295:58–68

    Google Scholar 

  • Byrne RH (2002) Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem Trans 3:11–16

    Google Scholar 

  • Cave RR, Ravizza GE, German CR et al. (2003) Deposition of osmium and other platinum-group elements beneath the ultramafic-hosted rainbow hydrothermal plume. Earth Planet Sci Lett 210:65–79

    Google Scholar 

  • Chen C, Sharma M (2009) High precision and high sensitivity measurements of osmium in seawater. Anal Chem 81:5400–5406

    Google Scholar 

  • Chen C, Taylor S, Sharma M (2005) Iron and osmium isotopes from stony micrometeorites and implications for the Os budget of the ocean. In: Lunar planetary science conference XXXVI. LPI, Houston

    Google Scholar 

  • Chen C, Sharma M, Bostick BC (2006) Lithologic controls on osmium isotopes in the rio orinoco. Earth Planet Sci Lett 252:138–151

    Google Scholar 

  • Chen C, Sedwick PN, Sharma M (2009) Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination. Proc Natl Acad Sci U S A 106:7724–7728

    Google Scholar 

  • Clayton DD (1964) Cosmoradiogenic chronologies of nucleosynthesis. Astrophys J 139:637–663

    Google Scholar 

  • Cohen AS, Waters FG (1996) Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Anal Chim Acta 332:269–275

    Google Scholar 

  • Colodner DC, Boyle EA, Edmond JM et al (1992) Postdepositional mobility of platinum, iridium and rhenium in marine-sediments. Nature 358:402–404

    Google Scholar 

  • Colodner DC, Boyle EA, Edmond JM (1993) Determination of rhenium and platinum in natural-waters and sediments, and iridium in sediments by flow-injection isotope-dilution inductively coupled plasma-mass spectrometry. Anal Chem 65:1419–1425

    Google Scholar 

  • Cook DL, Walker RJ, Horan MF et al (2004) Pt-Re-Os systematics of group IIAB and IIIAB iron meteorites. Geochim Cosmochim Acta 68:1413–1431

    Google Scholar 

  • Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass-spectrometry of osmium, rhenium, and iridium. Geochim Cosmochim Acta 55:397–401

    Google Scholar 

  • Dalai TK, Ravizza G (2006) Evaluation of osmium isotopes and iridium as paleoflux tracers in pelagic carbonates. Geochim Cosmochim Acta 70:3928–3942

    Google Scholar 

  • Dalai TK, Ravizza G (2010) Investigation of an early Pleistocene marine osmium isotope record from the eastern equatorial Pacific. Geochim Cosmochim Acta 74:4332–4345

    Google Scholar 

  • Dalai TK, Suzuki K, Minagawa M et al (2005) Variations in seawater osmium isotope composition since the last glacial maximum: a case study from the Japan Sea. Chem Geol 220:303–314

    Google Scholar 

  • Dalai TK, Ravizza GE, Peucker-Ehrenbrink B (2006) The late Eocene Os-187/Os-188 excursion: chemostratigraphy, cosmic dust flux and the early Oligocene glaciation. Earth Planet Sci Lett 241:477–492

    Google Scholar 

  • Date AR, Davis AE, Cheung YY (1987) The potential of fire assay and inductively coupled plasma source-mass spectrometry for the determination of platinum group elements in geological-materials. Analyst 112:1217–1222

    Google Scholar 

  • Economou-Eliopoulos M (1996) Platinum-group element distribution in chromite ores from ophiolite complexes: implications for their exploration. Ore Geol Rev 11:363–381

    Google Scholar 

  • Edmonds HN, Michael PJ, Baker ET et al (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic. Nature 421:252–256

    Google Scholar 

  • Enzweiler J, Potts PJ, Jarvis KE (1995) Determination of platinum, palladium, ruthenium and iridium in geological samples by isotope-dilution inductively-coupled plasma-mass spectrometry using a sodium peroxide fusion and tellurium coprecipitation. Analyst 120:1391–1396

    Google Scholar 

  • Esser BK, Turekian KK (1988) Accretion rate of extraterrestrial particles determined from osmium isotope systematics of pacific pelagic clay and manganese nodules. Geochim Cosmochim Acta 52:1383–1388

    Google Scholar 

  • Esser BK, Turekian KK (1993a) Anthropogenic osmium in coastal deposits. Environ Sci Technol 27:2719–2724

    Google Scholar 

  • Esser BK, Turekian KK (1993b) The osmium isotopic composition of the continental-crust. Geochim Cosmochim Acta 57:3093–3104

    Google Scholar 

  • Fehn U, Teng R, Elmore D et al (1986) Isotopic composition of osmium in terrestrial samples determined by accelerator mass-spectrometry. Nature 323:707–710

    Google Scholar 

  • Frei R, Frei KM (2002) A multi-isotopic and trace element investigation of the cretaceous-tertiary boundary layer at Stevns Klint, Denmark – inferences for the origin and nature of siderophile and lithophile element geochemical anomalies. Earth Planet Sci Lett 203:691–708

    Google Scholar 

  • Fresco J, Weiss HV, Phillips RB et al (1985) Iridium in sea-water. Talanta 32:830–831

    Google Scholar 

  • Gabrielli P, Barbante C, Plane JMC et al (2004a) Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature 432:1011–1014

    Google Scholar 

  • Gabrielli P, Varga A, Barbante C et al (2004b) Determination of Ir and Pt down to the sub-femtogram per gram level in polar ice by ICP-SFMS using preconcentration and a desolvation system (vol 19, pg 831, 2004). J Anal At Spectrom 19:831–837

    Google Scholar 

  • Gabrielli P, Plane JMC, Boutron CF et al (2006) A climatic control on the accretion of meteoric and super-chondritic iridium-platinum to the Antarctic ice cap. Earth Planet Sci Lett 250:459–469

    Google Scholar 

  • Gabrielli P, Barbante C, Plane JMC et al (2008) Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo. Chem Geol 255:78–86

    Google Scholar 

  • Gannoun A, Burton KW, Vigier N et al (2006) The influence of weathering process on riverine osmium isotopes in a basaltic terrain. Earth Planet Sci Lett 243:732–748

    Google Scholar 

  • Gelinas A, Kring DA, Zurcher L et al (2004) Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteorit Planet Sci 39:1003–1008

    Google Scholar 

  • Gobeil C, Sundby B, Macdonald RW et al (2001) Recent change in organic carbon flux to arctic ocean deep basins: evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys Res Lett 28:1743–1746

    Google Scholar 

  • Goonan TG (2005) Flows of selected materials associated with world copper smelting. In: USGS Open-File Report 2004-1395, Reston

    Google Scholar 

  • Gordon GW, Rockman M, Turekian KK et al (2009) Osmium isotopic evidence against an impact at the Frasnian-Famennian boundary. Am J Sci 309:420–430

    Google Scholar 

  • Gregoire DC (1988) Determination of platinum, palladium, ruthenium and iridium geological-materials by inductively coupled plasma mass-spectrometry with sample introduction by electrothermal vaporization. J Anal At Spectrom 3:309–314

    Google Scholar 

  • Gros M, Lorand JP, Luguet A (2002) Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited. Chem Geol 185:179–190

    Google Scholar 

  • Hassler DR, Peucker-Ehrenbrink B, Ravizza GE (2000) Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector icp-ms. Chem Geol 166:1–14

    Google Scholar 

  • Heller-Zeisler SF, Borgoul PV, Moore RR et al (2000) Comparison of INAA and RNAA methods with thermal-ionization mass spectrometry for iridium determinations in atmospheric tracer studies. J Radioanal Nucl Chem 244:93–96

    Google Scholar 

  • Helz GR, Adelson JM, Miller CV et al (2000) Osmium isotopes demonstrate distal transport of contaminated sediments in Chesapeake Bay. Environ Sci Technol 34:2528–2534

    Google Scholar 

  • Herr W, Hoffmeister W, Hirt B et al (1961) Versuch zur datierung von eisenmeteoriten nach der rhenium-osmium-methode. Z Naturforsch 16:1053–1058

    Google Scholar 

  • Hintenberger H, Herr W, Voshage H (1954) Radiogenic osmium from rhenium-containing molybdenite. Phys Rev 95:1690–1691

    Google Scholar 

  • Hodge V, Stallard M, Koide M et al (1986) Determination of platinum and iridium in marine waters, sediments, and organisms. Anal Chem 58:616–620

    Google Scholar 

  • Hoffman EL, Naldrett AJ, Vanloon JC et al (1978) Determination of all platinum group elements and gold in rocks and ore by neutron-activation analysis after preconcentration by a nickel sulfide fire-assay technique on large samples. Anal Chim Acta 102:157–166

    Google Scholar 

  • Horan MF, Walker RJ, Morgan JW et al (2003) Highly siderophile elements in chondrites. Chem Geol 196:5–20

    Google Scholar 

  • Iavicoli I, Carelli G, Bocca B et al (2008) Environmental and biological monitoring of iridium in the city of Rome. Chemosphere 71:568–573

    Google Scholar 

  • Iavicoli I, Fontana L, Marinaccio A et al (2010) Iridium alters immune balance between T helper 1 and T helper 2 responses. Hum Exp Toxicol 29:213–219

    Google Scholar 

  • Jackson SE, Fryer BJ, Gosse W et al (1990) Determination of the precious metals in geological-materials by inductively coupled plasma mass-spectrometry (ICP-MS) with nickel sulfide fire-assay collection and tellurium coprecipitation. Chem Geol 83:119–132

    Google Scholar 

  • Jiang SY, Yang JH, Ling HF et al (2007) Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of south China: an Os isotope and PGE geochernical investigation. Palaeogeogr Palaeoclimatol Palaeoecol 254:217–228

    Google Scholar 

  • Jickells TD, An ZS, Andersen KK et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Google Scholar 

  • Jones RT (1999) Platinum smelting in South Africa. S Afr J Sci 95:525–534

    Google Scholar 

  • Karner DB, Levine J, Muller RA et al (2003) Extraterrestrial accretion from the GISP2 ice core. Geochim Cosmochim Acta 67:751–763

    Google Scholar 

  • Keays RR, Ganapath R, Laul JC et al (1974) Simultaneous determination of 20 trace-elements in terrestrial, lunar and meteoritic material by radio-chemical neutron-activation analysis. Anal Chim Acta 72:1–29

    Google Scholar 

  • Koeberl C, Shirey SB (1993) Detection of a meteoritic component in Ivory-Coast tektites with Rhenium-Osmium isotopes. Science 261:595–598

    Google Scholar 

  • Koeberl C, Shirey SB (1997) Re-Os isotope systematics as a diagnostic tool for the study of impact craters and distal ejecta. Palaeogeogr Palaeoclimatol Palaeoecol 132:25–46

    Google Scholar 

  • Koeberl C, Reimold WU, Shirey SB (1994a) Saltpan impact crater, South-Africa – geochemistry of target rocks, breccias, and impact glasses, and osmium isotope systematics. Geochim Cosmochim Acta 58:2893–2910

    Google Scholar 

  • Koeberl C, Reimold WU, Shirey SB et al (1994b) Kalkkop crater, Cape Province, South-Africa – confirmation of impact origin using osmium isotope systematics. Geochim Cosmochim Acta 58:1229–1234

    Google Scholar 

  • Koeberl C, Sharpton VL, Schuraytz BC et al (1994c) Evidence for a meteoritic component in impact melt rock from the Chicxulub structure. Geochim Cosmochim Acta 58:1679–1684

    Google Scholar 

  • Koeberl C, Farley KA, Peucker-Ehrenbrink B et al (2004) Geochemistry of the end-permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology 32:1053–1056

    Google Scholar 

  • Koide M, Goldberg ED, Niemeyer S et al (1991) Osmium in marine-sediments. Geochim Cosmochim Acta 55:1641–1648

    Google Scholar 

  • Koide M, Goldberg ED, Walker R (1996) The analysis of seawater osmium. Deep Sea Res II 43:53–55

    Google Scholar 

  • Kyte FT, Wasson JT (1986) Accretion rate of extraterrestrial matter – iridium deposited 33 to 67 million years ago. Science 232:1225–1229

    Google Scholar 

  • Lal D, Jull AJT (2003) Extra-terrestrial influx rates of cosmogenic isotopes and platinum group elements: realizable geochemical effects. Geochim Cosmochim Acta 67:4925–4933

    Google Scholar 

  • Lee CTA, Wasserburg GJ, Kyte FT (2003) Platinum-group elements (PGE) and rhenium in marine sediments across the cretaceous-tertiary boundary: constraints on Re-PGE transport in the marine environment. Geochim Cosmochim Acta 67:655–670

    Google Scholar 

  • Lee SR, Horton JW, Walker RJ (2006) Confirmation of a meteoritic component in impact-melt rocks of the Chesapeake Bay impact structure, Virginia, USA – evidence from osmium isotopic and PGE systematics. Meteorit Planet Sci 41:819–833

    Google Scholar 

  • Levasseur S, Birck JL, Allegre CJ (1998) Direct measurement of femtomoles of osmium and the Os-187/Os-186 ratio in seawater. Science 282:272–274

    Google Scholar 

  • Levasseur S, Birck JL, Allegre CJ (1999) The osmium riverine flux and the oceanic mass balance of osmium. Earth Planet Sci Lett 174:7–23

    Google Scholar 

  • Li SH, Chai ZF, Mao XY (2007) Iridium in the Bering Sea and Arctic Ocean studied by neutron activation analysis. J Radioanal Nucl Chem 271:125–128

    Google Scholar 

  • Love SG, Brownlee DE (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262:550–553

    Google Scholar 

  • Luck JM, Allegre CJ (1983) Re-187-Os-187 systematics in meteorites and cosmochemical consequences. Nature 302:130–132

    Google Scholar 

  • Luck JM, Turekian KK (1983) Os-187/Os-186 in manganese nodules and the cretaceous-tertiary boundary. Science 222:613–615

    Google Scholar 

  • Marcantonio F, Turekian KK, Higgins S et al (1999) The accretion rate of extraterrestrial He-3 based on oceanic Th-230 flux and the relation to Os isotope variation over the past 200,000 years in an Indian ocean core. Earth Planet Sci Lett 170:157–168

    Google Scholar 

  • Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:173–206

    Google Scholar 

  • Martin CE, Peucker-Ehrenbrink B, Brunskill G et al (2001) Osmium isotope geochemistry of a tropical estuary. Geochim Cosmochim Acta 65:3193–3200

    Google Scholar 

  • McDaniel DK, Walker RJ, Hemming SR et al (2004) Sources of osmium to the modern oceans: new evidence from the Pt-190-Os-186 system. Geochim Cosmochim Acta 68:1243–1252

    Google Scholar 

  • McDonald I, Peucker-Ehrenbrink B, Coney L et al (2007) Search for a meteoritic component in drill cores from the Bosumtwi impact structure, Ghana: platinum group element contents and osmium isotopic characteristics. Meteorit Planet Sci 42:743–753

    Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the earth. Chem Geol 120:223–253

    Google Scholar 

  • Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208:319–338

    Google Scholar 

  • Meisel T, Krahenbuhl U, Nazarov MA (1995) Combined osmium and strontium isotopic study of the cretaceous-tertiary boundary at Sumbar, Turkmenistan – a test for an impact vs a volcanic hypothesis. Geology 23:313–316

    Google Scholar 

  • Meisel T, Walker RJ, Morgan JW (1996) The osmium isotopic composition of the earth’s primitive upper mantle. Nature 383:517–520

    Google Scholar 

  • Michel HV, Alvarez WA, Alvarez LW (1990) Geochemical studies of the cretaceous-tertiary boundary in ODP holes 689b and 690c. In: Scientific results, Proceedings of the ocean drilling program. Scientific Results, Proc Ocean Drill Prog 113:159–168

    Google Scholar 

  • Morcelli CPR, Figueiredo AMG (2000) Determination of iridium at sub ng levels in geological materials by RNAA. J Radioanal Nucl Chem 244:619–621

    Google Scholar 

  • Morgan JW (1965) Simultaneous determination of rhenium and osmium in rocks by neutron activation analysis. Anal Chim Acta 32:8

    Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits. Springer, Berlin, p 727

    Google Scholar 

  • Nogueira CA, Figueiredo AMG (1995) Determination of platinum, palladium, iridium and gold in selected geological reference materials by radiochemical neutron-activation analysis – comparison of procedures based on aqua regia leaching and sodium peroxide sintering. Analyst 120:1441–1443

    Google Scholar 

  • Oxburgh R (1998) Variations in the osmium isotope composition of sea-water over the past 200,000 years. Earth Planet Sci Lett 159:183–191

    Google Scholar 

  • Oxburgh R (2001) Residence time of osmium in the oceans. Geochem Geophys Geosyst 2:2000GC000104

    Google Scholar 

  • Oxburgh R, Pierson-Wickmann AC, Reisberg L et al (2007) Climate-correlated variations in seawater Os-187/Os-188 over the past 200,000 yr: evidence from the cariaco basin, venezuela. Earth Planet Sci Lett 263:246–258

    Google Scholar 

  • Palmer MR, Turekian KK (1986) Os-187/Os-186 in marine manganese nodules and the constraints on the crustal geochemistries of rhenium and osmium. Nature 319:216–220

    Google Scholar 

  • Palmer MR, Falkner KK, Turekian KK et al (1988) Sources of osmium isotopes in manganese nodules. Geochim Cosmochim Acta 52:1197–1202

    Google Scholar 

  • Paquay FS, Ravizza GE, Dalai TK et al (2008) Determining chondritic impactor size from the marine osmium isotope record. Science 320:214–218

    Google Scholar 

  • Paquay FS, Goderis S, Ravizza G et al (2009) Absence of geochemical evidence for an impact event at the Bolling-Allerød/Younger Dryas transition. Proc Natl Acad Sci U S A 106:21505–21510

    Google Scholar 

  • Pasava J (1993) Anoxic sediments an important environment for PGE; an overview. Ore Geol Rev 8:425–445

    Google Scholar 

  • Pattou L, Lorand JP, Gros M (1996) Non-chondritic platinum-group element ratios in the earth's mantle. Nature 379:712–715

    Google Scholar 

  • Paul M, Reisberg L, Vigier N (2009) A new method for analysis of osmium isotopes and concentrations in surface and subsurface water samples. Chem Geol 258:136–144

    Google Scholar 

  • Paul M, Reisberg L, Vigier N et al (2010) Dissolved osmium in Bengal plain groundwater: implications for the marine Os budget. Geochim Cosmochim Acta 74:3432–3448

    Google Scholar 

  • Pearson DG, Woodland SJ (2000) Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chem Geol 165:87–107

    Google Scholar 

  • Pedersen RB, Johannesen GM, Boyd R (1993) Stratiform platinum-group element mineralizations in the ultramafic cumulates of the Leka ophiolite complex, central Norway. Econ Geol Bull Soc Econ Geol 88:782–803

    Google Scholar 

  • Pegram WJ, Turekian KK (1999) The osmium isotopic composition change of Cenozoic sea water as inferred from a deep-sea core corrected for meteoritic contributions. Geochim Cosmochim Acta 63:4053–4058

    Google Scholar 

  • Pegram WJ, Krishnaswami S, Ravizza GE et al (1992) The record of sea-water Os-187/Os-186 variation through the Cenozoic. Earth Planet Sci Lett 113:569–576

    Google Scholar 

  • Peucker-Ehrenbrink B (1996) Accretion of extraterrestrial matter during the last 80-million-years and. Geochim Cosmochim Acta 60:3187–3196

    Google Scholar 

  • Peucker-Ehrenbrink B (2002) Comment on “residence time of osmium in the oceans” by Rachel Oxburgh. Geochem Geophys Geosyst 3:1

    Google Scholar 

  • Peucker-Ehrenbrink B, Jahn BM (2001) Rhenium-osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust. Geochem Geophys Geosyst 2:26

    Google Scholar 

  • Peucker-Ehrenbrink B, Ravizza G (2000a) The effects of sampling artifacts on cosmic dust flux estimates: a reevaluation of nonvolatile tracers (Os, Ir). Geochim Cosmochim Acta 64:1965–1970

    Google Scholar 

  • Peucker-Ehrenbrink B, Ravizza G (2000b) The marine osmium isotope record. Terra Nova 12:205–219

    Google Scholar 

  • Peucker-Ehrenbrink B, Ravizza G, Hofmann AW (1995) The marine Os-187/Os-186 record of the past 80-million years. Earth Planet Sci Lett 130:155–167

    Google Scholar 

  • Plessen HG, Erzinger J (1998) Determination of the platinum-group elements and gold in twenty rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by nickel sulfide fire assay. Geostandards Newsl 22:187–194

    Google Scholar 

  • Poirier A, Gariepy C (2005) Isotopic signature and impact of car catalysts on the anthropogenic osmium budget. Environ Sci Technol 39:4431–4434

    Google Scholar 

  • Prichard HM, Lord RA (1993) An overview of the PGE concentrations in the Shetland ophiolite complex. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics, vol 76. Geological Society, London

    Google Scholar 

  • Prichard HM, Neary CR, Fisher PC et al (2008) PGE -rich podiform chromitites in the Al’ays ophiolite complex, Saudi Arabia: an example of critical mantle melting to extract and concentrate PGE. Econ Geol 103:1507–1529

    Google Scholar 

  • Puchtel IS, Walker RJ, Brandon AD et al (2009) Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim Cosmochim Acta 73:6367–6389

    Google Scholar 

  • Rauch S, Hemond HF, Peucker-Ehrenbrink B (2004) Source characterisation of atmospheric platinum group element deposition into an ombrotrophic peat bog. J Environ Monit 6:335–343

    Google Scholar 

  • Rauch S, Hemond HF, Peucker-Ehrenbrink B et al (2005) Platinum group element concentrations and osmium isotopic composition in urban airborne particles from Boston. Massachusetts Environ Sci Technol 39:9464–9470

    Google Scholar 

  • Rauch S, Peucker-Ehrenbrink B, Molina LT et al (2006) Platinum group elements in airborne particles in Mexico city. Environ Sci Technol 40:7554–7560

    Google Scholar 

  • Rauch S, Peucker-Ehrenbrink B, Kylander ME et al (2010) Anthropogenic forcings on the surficial osmium cycle. Environ Sci Technol 44:881–887

    Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318:1–43

    Google Scholar 

  • Ravizza GE, Bothner MH (1996) Osmium isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod Bays. Geochim Cosmochim Acta 60:2753–2763

    Google Scholar 

  • Ravizza G, Dalai TK (2006) The potential of Ir and Os isotopes as point paleoflux tracers. Geochim Cosmochim Acta 70:A520

    Google Scholar 

  • Ravizza G, Peucker-Ehrenbrink B (2003) Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record. Science 302:1392–1395

    Google Scholar 

  • Ravizza G, Pyle D (1997) PGE and Os isotopic analyses of single sample aliquots with NiS fire assay preconcentration. Chem Geol 141:251–268

    Google Scholar 

  • Rehkamper M, Halliday AN (1997) Development and application of new ion-exchange techniques for the separation of the platinum group and other siderophile elements from geological samples. Talanta 44:663–672

    Google Scholar 

  • Rehkamper M, Halliday AN, Wentz RF (1998) Low-blank digestion of geological samples for platinum-group element analysis using a modified carius tube design. Fresenius J Anal Chem 361:217–219

    Google Scholar 

  • Reisberg L, Meisel T (2002) The Re-Os isotopic system: a review of analytical techniques. Geostandards Newsl 26:249–267

    Google Scholar 

  • Robinson N, Ravizza G, Coccioni R et al (2009) A high-resolution marine Os-187/Os-188 record for the late Maastrichtian: distinguishing the chemical fingerprints of Deccan volcanism and the K-Pg impact event. Earth Planet Sci Lett 281:159–168

    Google Scholar 

  • Rodushkin I, Engstrom E, Sorlin D et al (2007a) Osmium in environmental samples from northeast Sweden. Part II. Identification of anthropogenic sources. Sci Total Environ 386:159–168

    Google Scholar 

  • Rodushkin I, Engstrom E, Sorlin D et al (2007b) Osmium. In environmental samples from northeast Sweden – part I. Evaluation of background status. Sci Total Environ 386:145–158

    Google Scholar 

  • Russ GP, Bazan JM (1987a) Isotopic ratio measurements with an inductively coupled plasma source-mass spectrometer. Spectrochim Acta B 42:49–62

    Google Scholar 

  • Russ GP, Bazan JM (1987b) Osmium isotopic ratio measurements by inductively coupled plasma source-mass spectrometry. Anal Chem 59:984–989

    Google Scholar 

  • Schmitz B, Tassinari M, Peucker-Ehrenbrink B (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet Sci Lett 194:1–15

    Google Scholar 

  • Sengupta JG, Gregoire DC (1989) Determination of ruthenium, palladium and iridium in 27 international reference silicate and iron-formation rocks, ores and related materials by isotope-dilution inductively-coupled plasma mass-spectrometry. Geostandards Newsl 13:197–204

    Google Scholar 

  • Sharma M, Wasserburg GJ (1997) Osmium in the rivers. Geochim Cosmochim Acta 61:5411–5416

    Google Scholar 

  • Sharma M, Papanastassiou DA, Wasserburg GJ (1997) The concentration and isotopic composition of osmium in the oceans. Geochim Cosmochim Acta 61:3287–3299

    Google Scholar 

  • Sharma M, Wasserburg GJ, Hofmann AW et al (1999) Himalayan uplift and osmium isotopes in oceans and rivers. Geochim Cosmochim Acta 63:4005–4012

    Google Scholar 

  • Sharma M, Wasserburg GJ, Hofmann AW et al (2000) Osmium isotopes in hydrothermal fluids from the Juan de Fuca ridge. Earth Planet Sci Lett 179:139–152

    Google Scholar 

  • Sharma M, Polizzotto M, Anbar AD (2001) Iron isotopes in hot springs along the Juan de Fuca ridge. Earth Planet Sci Lett 194:39–51

    Google Scholar 

  • Sharma M, Balakrishna K, Hofmann AW et al (2007a) The transport of osmium and strontium isotopes through a tropical estuary. Geochim Cosmochim Acta 71:4856–4867

    Google Scholar 

  • Sharma M, Rosenberg EJ, Butterfield DA (2007b) Search for the proverbial mantle osmium sources to the oceans: hydrothermal alteration of mid-ocean ridge basalt. Geochim Cosmochim Acta 71:4655–4667

    Google Scholar 

  • Shen JJ, Papanastassiou DA, Wasserburg GJ (1996) Precise Re-Os determinations and systematics of iron meteorites. Geochim Cosmochim Acta 60:2887–2900

    Google Scholar 

  • Shinotsuka K, Suzuki K (2007) Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction. Anal Chim Acta 603:129–139

    Google Scholar 

  • Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chem 67:2136–2141

    Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500

    Google Scholar 

  • Simonetti A, Gariepy C, Carignan J (2003) Tracing sources of atmospheric pollution in western canada using the pb isotopic composition and heavy metal abundances of epiphytic lichens. Atmospheric Environment 37:2853–2865

    Google Scholar 

  • Smith IC, Carson BL, Ferguson TL (1974) Osmium: an appraisal of environmental exposure. Environ Health Perspect 8:201–213

    Google Scholar 

  • Sotnikov VI, Berzina AN, Economou-Eliopoulos M et al (2001) Palladium, platinum and gold distribution in porphyry Cu +/− Mo deposits of Russia and Mongolia. Ore Geol Rev 18:95–111

    Google Scholar 

  • Stein HJ, Hannah JL, Zimmerman A et al. (2004) A 2.5 Ga porphyry Cu-Mo-Au deposit at Malanjkhand, central India: Implications for late Archean continental assembly. Precambrian Research 134:189–226

    Google Scholar 

  • Suarez AE, Caffrey PF, Borgoul PV et al (1998) Use of an iridium tracer to determine the size distribution of aerosol emitted from a fleet of diesel sanitation trucks. Environ Sci Technol 32:1522–1529

    Google Scholar 

  • Suzuki T, Miyada M, Ohta K et al (1998) Determination of osmium in waste water by graphite furnance atomic absorption spectrometry. Mikrochim Acta 129:259–263

    Google Scholar 

  • Tanaka N, Oura Y, Ebihara M (2008) Determination of iridium and gold in rock samples by using pre-concentration neutron activation analysis. J Radioanal Nucl Chem 278:603–606

    Google Scholar 

  • Teng RTD, Fehn U, Elmore D et al (1987) Determination of Os isotopes and Re/Os ratios using AMS. Nucl Instrum Meth Phys Res B 29:281–285

    Google Scholar 

  • Truran JW (1998) The age of the universe from nuclear chronometers. Proc Natl Acad Sci U S A 95:18–21

    Google Scholar 

  • Turekian KK, Luck JM (1984) Estimation of continental Os-187/Os-186 values by using Os-187/Os-186 and Nd-143/Nd-144 ratios in marine manganese nodules. Proc Natl Acad Sci U S A Phys Sci 81:8032–8034

    Google Scholar 

  • Turekian KK, Sharma M, Gordon GW (2007) The behavior of natural and anthropogenic osmium in the Hudson river-Long Island Sound estuarine system. Geochim Cosmochim Acta 71:4135–4140

    Google Scholar 

  • Volkening J, Walczyk T, Heumann KG (1991) Osmium isotope ratio determinations by negative thermal ionization mass-spectrometry. Int J Mass Spectrom Ion Process 105:147–159

    Google Scholar 

  • Walczyk T, Heumann KG (1993) Iridium isotope ratio measurements by negative thermal ionization mass-spectrometry and atomic-weight of iridium. Int J Mass Spectrom Ion Process 123:139–147

    Google Scholar 

  • Walker RJ (1988) Low-blank chemical-separation of rhenium and osmium from gram quantities of silicate rock for measurement by resonance ionization mass-spectrometry. Anal Chem 60:1231–1234

    Google Scholar 

  • Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde Geochem 69:101–125

    Google Scholar 

  • Walker RJ, Fassett JD (1986) Isotopic measurement of subnanogram quantities of rhenium and osmium by resonance ionization mass-spectrometry. Anal Chem 58:2923–2927

    Google Scholar 

  • Walker RJ, Morgan JW, Beary ES et al (1997) Applications of the Pt-190-Os-186 isotope system to geochemistry and cosmochemistry. Geochim Cosmochim Acta 61:4799–4807

    Google Scholar 

  • Walker RJ, Horan MF, Morgan JW et al (2002a) Comparative Re-187-Os-187 systematics of chondrites: implications regarding early solar system processes. Geochim Cosmochim Acta 66:4187–4201

    Google Scholar 

  • Walker RJ, Prichard HM, Ishiwatari A et al (2002b) The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim Cosmochim Acta 66:329–345

    Google Scholar 

  • Walker RJ, McDonough WF, Honesto J et al (2008) Modeling fractional crystallization of group IVB iron meteorites. Geochim Cosmochim Acta 72:2198–2216

    Google Scholar 

  • Williams GA, Turekian KK (2002) Atmospheric supply of osmium to the oceans. Geochim Cosmochim Acta 66:3789–3791

    Google Scholar 

  • Williams GA, Turekian KK (2004) The glacial-interglacial variation of seawater osmium isotopes as recorded in Santa Barbara basin. Earth Planet Sci Lett 228:379–389

    Google Scholar 

  • Williams G, Marcantonio F, Turekian KK (1997) The behavior of natural and anthropogenic osmium in long island sound, an urban estuary in the eastern US. Earth Planet Sci Lett 148:341–347

    Google Scholar 

  • Wiseman CLS, Zereini F (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci Total Environ 407:2493–2500

    Google Scholar 

  • Woodhouse OB, Ravizza G, Kenison-Falkner K et al (1999) Osmium in seawater: vertical profiles of concentration and isotopic composition in the eastern Pacific Ocean. Earth Planet Sci Lett 173:223–233

    Google Scholar 

  • Wu CC, Suarez AE, Lin ZB et al (1998) Application of an Ir tracer to determine soot exposure to students commuting to school on Baltimore public buses. Atmos Environ 32:1911–1919

    Google Scholar 

  • Yamashita Y, Takahashi Y, Haba H et al (2007) Comparison of reductive accumulation of Re and Os in seawater – sediment systems. Geochim Cosmochim Acta 71:3458–3475

    Google Scholar 

  • Yang G, Hannah JL, Zimmerman A et al. (2009) Re-Os depositional age for Archean carbonaceous slates from the southwestern superior province: Challenges and insights. Earth Planet Sci Lett 280:83–92

    Google Scholar 

  • Yi YV, Masuda A (1996a) Isotopic homogenization of iridium for high sensitivity determination by isotope dilution inductively coupled plasma mass spectrometry. Anal Sci 12:7–12

    Google Scholar 

  • Yi YV, Masuda A (1996b) Simultaneous determination of ruthenium, palladium, iridium, and platinum at ultratrace levels by isotope dilution inductively coupled plasma mass spectrometry in geological samples. Anal Chem 68:1444–1450

    Google Scholar 

  • Yokoyama T, Alexander CMO, Walker RJ (2010) Osmium isotope anomalies in chondrites: results for acid residues and related leachates. Earth Planet Sci Lett 291:48–59

    Google Scholar 

  • Zaccarini F, Pushkarev EV, Fershtater GB et al (2004) Composition and mineralogy of PGE -rich chromitites in the Nurali lherzolite-gabbro complex, southern Urals, Russia. Can Mineralog 42:545–562

    Google Scholar 

  • Zylberberg DR, Goldstein SL, Sharma M (2006) A 100ky record of the osmium isotopic composition of seawater. In: Eos transactions, vol 87(52), Fall meeting supplement, American Geophysical Union

    Google Scholar 

Download references

Acknowledgements

I would like to thank Mark Baskaran for inviting me to write this review. I gratefully acknowledge reviews from Karl Turekian, Mark Baskaran, and an anonymous reviewer that led to considerable improvement of this paper. Over the years I have benefited from discussions with several individuals on various aspects of the geochemistry of Ir and Os. These span from professors, when I was a graduate student and a post doc, to my own graduate students and fellow researchers in the field. I would like to thank them all for generously giving me insights into this fascinating field, and into the art of making and evaluating the challenging measurements involved. I am especially grateful to Ariel Anbar, Gerhard Bruegmann, Cynthia Chen, Udo Fehn, Dimitri Papanastassiou, Bernhard Peucker-Ehrenbrink, Matthieu Roy-Barman, Mark Rehkamper, Karl Turekian, Rich Walker, and G.J. Wasserburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, M. (2012). Applications of Osmium and Iridium as Biogeochemical Tracers in the Environment. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_11

Download citation

Publish with us

Policies and ethics