Skip to main content

Stable Isotopes of Transition and Post-Transition Metals as Tracers in Environmental Studies

  • Chapter
  • First Online:

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes. Reviews of Mineralogy and Geochemistry, vol 55. Mineralogical Society of America, Washington, pp 113–152

    Google Scholar 

  • Anbar AD (2004) Molybdenum stable isotopes: observations, interpretations and directions. Rev Mineral Geochem 55:425–454

    Google Scholar 

  • Anbar AD, Roe JE, Barling J, Nealson KH (2000) Nonbiological fractionation of iron isotopes. Science 288:126–128

    Google Scholar 

  • Anbar AD, Jarzecki AA, Spiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O) 3+6 and Fe(H2O) 2+6 : implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837

    Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90

    Google Scholar 

  • Asael D, Matthews Bar-Matthews M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 243:238–254

    Google Scholar 

  • Balci N, Bullen TD, Witte-Lien K, Shanks WC, Motelica M, Mandernack KW (2006) Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(II) precipitation. Geochim Cosmochim Acta 70:622–639

    Google Scholar 

  • Balistrieri LS, Borrok DM, Wanty RB, Ridley WI (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxides: experimental mixing of acid rock drainage and pristine river water. Geochim Cosmochim Acta 72:311–328

    Google Scholar 

  • Barling J, Anbar AD (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217:315–329

    Google Scholar 

  • Barling J, Arnold GL, Anbar AD (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett 193:447–457

    Google Scholar 

  • Beard BL, Johnson CM (1999) High precision iron isotope measurements of terrestrial and lunar materials. Geochim Cosmochim Acta 63:1653–1660

    Google Scholar 

  • Beard BL, Johnson CM, Cox L, Sun H, Nealson KH, Aguilar C (1999) Iron isotope biosignatures. Science 285:1889–1892

    Google Scholar 

  • Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195:87–117

    Google Scholar 

  • Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet Sci Lett 295:241–250

    Google Scholar 

  • Bergquist BA, Blum JD (2007) Mass-dependent and –independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–420

    Google Scholar 

  • Bergquist BA, Blum JD (2009) The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5:353–357

    Google Scholar 

  • Bermin J, Vance D, Archer C, Statham PJ (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297

    Google Scholar 

  • Berna EC, Johnson TM, Makdisi RS, Basu A (2010) Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume. Environ Sci Technol 44:1043–1048

    Google Scholar 

  • Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: Baskaran M (ed) Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry, DOI:10.1007/978-3-642-10637-8_10, © Springer-Verlag Berlin Heidelberg 2011

    Google Scholar 

  • Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:353–359

    Google Scholar 

  • Borrok DM, Wanty RB, Ridley WI, Wolf R, Lamothe PJ, Adams M (2007) Separation of copper, iron and zinc from complex aqueous solutions for isotopic measurement. Chem Geol 242:400–414

    Google Scholar 

  • Borrok DM, Nimick DA, Wanty RB, Ridley WI (2008) Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining. Geochim Cosmochim Acta 72:329–344

    Google Scholar 

  • Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282

    Google Scholar 

  • Bullen TD (2007) Chromium stable isotopes as a new tool for forensic hydrology at sites contaminated with anthropogenic chromium. In: Bullen TD, Wang Y (eds) Water-rock interaction: proceedings of the 12th international symposium on water-rock interaction, vol 1. Taylor & Francis, London, pp 699–702

    Google Scholar 

  • Bullen TD, Amundson R (2010) Interpreting Ca and Fe stable isotope signals in carbonates: a new perspective. Proceedings of the 13th International Symposium on Water-Rock Interaction (WRI-13), Guanajuato, Mexico. Taylor & Francis, London

    Google Scholar 

  • Bullen TD, Eisenhauer AE (2009) Metal stable isotopes in low-temperature systems: a primer. Elements 5:349–352

    Google Scholar 

  • Bullen TD, Walczyk T (2009) Environmental and biomedical applications of natural metal stable isotope variations. Elements 5:381–385

    Google Scholar 

  • Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29:699–702

    Google Scholar 

  • Cameron V, Vance D, Archer C, House C (2009) A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci 106:10944–10948

    Google Scholar 

  • CH2MHill (2007) Groundwater background study report, Hinkley Compressor Station, Hinkley, California. Internal Report to Pacific Gas & Electric Corporation, February 2007

    Google Scholar 

  • Charlson DV, Shoemaker RC (2006) Evolution of iron acquisition in higher plants. J Plant Nutr 29:1109–1125

    Google Scholar 

  • Chen JB, Gaillardet J, Louvat P (2008) Zinc isotopes in the Seine River waters, France: a probe of anthropogenic contamination. Environ Sci Technol 42:6494–6501

    Google Scholar 

  • Chen JB, Gaillardet J, Louvat P, Huon S (2009) Zinc isotopes in the suspended load of the Seine River, France; isotopic variations and source determination. Geochim Cosmochim Acta 73:4060–4076

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, 328p

    Google Scholar 

  • Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E (2006a) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40:2525–2530

    Google Scholar 

  • Cloquet C, Carignan J, Libourel G (2006b) Isotopic composition of Zn and Pb atmospheric depositions in an urban/periurban area of northeastern France. Environ Sci Technol 40:6594–6600

    Google Scholar 

  • Cloquet C, Carignan J, Lehmann MF, Vanhaecke F (2008) Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Anal Bioanal Chem 390:451–463

    Google Scholar 

  • Das J, Pobi M (1990) Separation of titanium, iron and aluminium on a chelating resin with benzoylphenylhydroxylamine group and application to bauxite and clay. Fresenius’ J Anal Chem 336:578–581

    Google Scholar 

  • Eisenhauer A, Kisakurek B, Bohm F (2009) Marine calcification: an alkali earth metal isotope perspective. Elements 5:365–368

    Google Scholar 

  • Ellis A, Johnson TM, Bullen TD (2002) Chromium isotopes and the fate of hexavalent chromium in the environment. Science 295:2060–2062

    Google Scholar 

  • Ellis A, Johnson TM, Bullen TD (2004) Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environ Sci Technol 38:3604–3607

    Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard OFX (2009) Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711

    Google Scholar 

  • Estrade N, Carignan J, Donard OFX (2010) Isotope tracing of atmospheric mercury sources in an urban area of northeastern France. Environ Sci Technol 44:6062–6067

    Google Scholar 

  • Fantle MS, Bullen TD (2009) Essentials of iron, chromium and calcium isotope analysis of natural materials by thermal ionization mass spectrometry. Chem Geol 258:50–64

    Google Scholar 

  • Geulke M, von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environ Sci Technol 41:1896–1901

    Google Scholar 

  • Irisawa K, Hirata T (2006) Tungsten isotopic analysis of six geochemical reference materials using multiple collector–ICP-mass spectrometry coupled with rhenium-external correction technique. Geochim Cosmochim Acta 70:A279

    Google Scholar 

  • Izbicki JA, Ball JW, Bullen TD, Sutley SJ (2008) Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl Geochim 23:1325–1352

    Google Scholar 

  • Johnson TM (2011) Stable isotopes of Cr and Se as tracers of redox processes in earth surface environments. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • Johnson CM, Beard BL (1999) Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. Int J Mass Spectrom 193:87–99

    Google Scholar 

  • Johnson TM, Bullen TD, Zawislanski PT (2000) Selenium stable isotope ratios as indicators of sources and cycling of selenium: results from the northern reach of San Francisco Bay. Environ Sci Technol 34:2075–2079

    Google Scholar 

  • Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth Planet Sci Lett 195:141–153

    Google Scholar 

  • Johnson CM, Beard BL, Beukes NJ, Klein C, O’Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib Mineralog Petrol 144:523–547

    Google Scholar 

  • Johnson CM, Beard BL, Roden EE, Newman DK, Nealson KH (2004) Isotopic constraints on biogeochemical cycling of Fe. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes. Mineralogical Society of America Reviews in Mineralogy & Geochemistry 55: 359–408

    Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci 36:457–493

    Google Scholar 

  • Kavner A, John SG, Sass S, Boyle EA (2008) Redox-driven stable isotope fractionation in transition metals: Application to Zn electroplating. Geochim Cosmochim Acta 72:1731–1741

    Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, 839p

    Google Scholar 

  • Kiczka M, Wiederhold JG, Kraemer SM, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during Fe uptake and translocation in alpine plants. Environ Sci Technol 44:6144–6150

    Google Scholar 

  • Kling GW, Evans WC, Tanyileke G, Kusakabe M, Ohba T, Yoshida Y, Hell JV (2005) Degassing Lakes Nyos and Nonoun: defusing certain disaster. Proc Natl Acad Sci USA 102:14185–14190

    Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv Agron 91:1–46

    Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Google Scholar 

  • Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350

    Google Scholar 

  • Liu Y, Huang M, Masuda A, Inoue M (1998) High-precision determination of osmium and rhenium isotope ratios by in situ oxygen isotope ratio correction using negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Processes 173:163–175

    Google Scholar 

  • Longerich HP, Fryer BJ, Strong DF (1987) Determination of lead isotope ratios by inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochimjjica Acta 42B:39–48

    Google Scholar 

  • Luo Y, Dabek-Zlotorzynska E, Celo V, Muir DCG, Yang L (2010) Accurate and precise determination of silver isotope fractionation in environmental samples by multi-collector-ICPMS. Anal Chem 82:3922–3928

    Google Scholar 

  • Malinovsky D, Hammarlund D, Ilyashuk B, Martinsson O, Gelting J (2007) Variations in the isotopic composition of molybdenum in freshwater lake systems. Chem Geol 236:181–198

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Martin JH and Fitzwater SE (1988) Iron-deficiency limits phytoplankton growth in the Northeast Pacific Subarctic. Nature 331:341–343

    Google Scholar 

  • Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley SL (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69:5233–5246

    Google Scholar 

  • Mattielli N, Petit JCJ, Deboudt K, Flament P, Perdrix E, Taillez A, Rimetz-Planchon J, Weis D (2009) Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb–Zn refinery. Atmos Environ 43:1265–1272

    Google Scholar 

  • Moynier F, Pichat S, Pons M-L, Fike D, Balter V, Albarède F (2008) Isotopic fractionation and transport mechanisms of Zn in plants. Chem Geol 267:125–130

    Google Scholar 

  • Neubert N, Nägler TF, Böttcher ME (2008) Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–778

    Google Scholar 

  • Pelly IZ, Lipschutz ME, Balsiger H (1970) Vanadium isotopic composition and contents in chondrites. Geochim Cosmochim Acta 34:1033–1036

    Google Scholar 

  • Polyakov VB, Mineev SD (2000) The use of Mossbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64:849–865

    Google Scholar 

  • Poulson RL, Siebert C, McManus J, Berelson WM (2006) Authigenic molybdenum isotope signatures in marine sediments. Geology 34:617–620

    Google Scholar 

  • Rehkämper M, Wombacher F, Aggarwal JK (2004) Stable isotope analysis by multiple collector ICP-MS. In: de Groot PA (ed) Handbook of stable isotope analytical techniques. Elsevier, Amsterdam, pp 692–725

    Google Scholar 

  • Rehkämper M, Wombacher F, Horner TJ, Xue Z (2011) Natural and anthropogenic Cd isotope variations. In: Baskaran M (ed) Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry, DOI 10.1007/978-3-642-10637-8_10, © Springer-Verlag Berlin Heidelberg 2011

    Google Scholar 

  • Richter FM, Dauphas N, Teng F-Z (2009) Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103

    Google Scholar 

  • Ripperger S, Rehkämper M (2007) Precise determination of cadmium isotope fractionation in seawater by double-spike MC-ICPMS. Geochim Cosmochim Acta 71:631–642

    Google Scholar 

  • Romheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Google Scholar 

  • Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431

    Google Scholar 

  • Sahoo YV, Nakai S, Ali A (2006) Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry. Analyst 131:434–439

    Google Scholar 

  • Schauble EA (2003) Modeling zinc isotope fractionations. EOS Trans AGU 84:F232

    Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes, reviews in mineralogy and geochemistry, vol 55. Mineralogical Society of America and Geochemical Society, Washington, D.C., pp 65–111

    Google Scholar 

  • Schmitt A-D, Galer SJG, Abouchami W (2009a) High-precision cadmium stable isotope measurements by double spike thermal ionization mass spectrometry. J Anal At Spectrom 24:1079–1088

    Google Scholar 

  • Schmitt A-D, Galer SJG, Abouchami W (2009b) Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth Planet Sci Lett 277:262–272

    Google Scholar 

  • Schoenberg R, Zink S, Staubwasser M, von Blanckenburg F (2008) The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chem Geol 249:294–306

    Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury – an overview. Atmos Environ 32:809–822

    Google Scholar 

  • Severmann S, Anbar AD (2009) Reconstructing paleoredox conditions through a multitracer approach: the key to the past is the present. Elements 5:359–364

    Google Scholar 

  • Severmann S, Lyons TW, Anbar A, McManus J, Gordon G (2008) Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36:487–490

    Google Scholar 

  • Shiel AE, Weiss D, Orians KJ (2010) Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Sci Total Environ 408:2357–2368

    Google Scholar 

  • Siebert C, Nägler TF, Kramers JD (2001) Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys, Geosyst 2:1032

    Google Scholar 

  • Siebert C, Nagler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171

    Google Scholar 

  • Siebert C, McManus J, Bice A, Poulson R, Berelson WM (2006) Molybdenum isotope signatures in continental margin marine sediments. Earth Planet Sci Lett 241:723–733

    Google Scholar 

  • Sikora ER, Johnson TM, Bullen TD (2008) Microbial mass-dependent fractionation of chromium isotopes. Geochim Cosmochim Acta 72:3631–3641

    Google Scholar 

  • Sivry Y, Riotte J, Sonke JE, Audry S, Schäfer J, Viers J, Blanc G, Freydier R, Dupré B (2008) Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters: the Riou Mort–Lot River system. Chem Geol 255:295–304

    Google Scholar 

  • Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66:2995–3015

    Google Scholar 

  • Suzuki M et al (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Google Scholar 

  • Teutsch N, Schmid M, Muller B, Halliday AN, Burgmann H, Wehrli B (2009) Large iron isotope fractionation at the oxic-anoxic boundary in Lake Nyos. Earth Planet Sci Lett 285:52–60

    Google Scholar 

  • Thevenot DR, Moilleron R, Lestel L, Gromaire MC, Rocher V, Cambier P, Bonte P, Colin JL, de Ponteves C, Maybeck M (2007) Critical budget of metal sources and pathways in the Seine River basin (1994–2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Sci Total Environ 375:180–203

    Google Scholar 

  • Vance D, Archer C, Bermin J, Perkins J, Statham PJ, Lohan MC, Elwood MJ, Mills RA (2008) The copper isotope geochemistry of rivers and the oceans. Earth Planet Sci Lett 274:204–213

    Google Scholar 

  • Viers J, Oliva P, Nonell A, Gélabert A, Sonke JE, Freydler R, Gainville R, Dupré B (2007) Evidence of Zn isotopic fractionation in a soil plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol 239:124–137

    Google Scholar 

  • Von Blanckenburg F, von Wirén N, Guelke M, Weiss DJ, Bullen TD (2009) Fractionation of metal stable isotopes by higher plants. Elements 5:375–380

    Google Scholar 

  • Wasylenki LE, Rolfe BA, Weeks CL, Spiro TG, Anbar AD (2008) Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72:5997–6005

    Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial oxidation and reduction. Nat Rev Microbiol 4:752–764

    Google Scholar 

  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710

    Google Scholar 

  • Weiss DJ, Rausch N, Mason TFD, Coles BJ, Wilkinson JJ, Ukonmaanaho L, Arnold T, Nieminen TM (2007) Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim Cosmochim Acta 71:3498–3517

    Google Scholar 

  • Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67:4231–4250

    Google Scholar 

  • Wen H, Carignan J, Cloquet C, Zhu X, Zhang Y (2010) Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: proposition for delta zero and secondary references. J Anal At Spectrom 25:716–721

    Google Scholar 

  • Widory D, Petelet-Giraud E, LeBihan O, LeMoullec Y, Quetel C, Snell J, Van Bocxstaele M, Hure A, Canard E, Joos E, Forti L, Bullen T, Johnson T, Fiani E (2010) Metals in atmospheric particles: can isotopes help discriminate potential sources? Atmospheric Pollution, Special Edition:75–82

    Google Scholar 

  • Wieser ME, Schwieters JB (2005) The development of multiple collector mass spectrometry for isotope ratio measurements. Int J Mass Spectrom 242:97–115

    Google Scholar 

  • Wiesli RA, Beard BL, Johnson CM (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chem Geol 211:343–362

    Google Scholar 

  • Wombacher F, Rehkamper M, Mezger K, Munker C (2003) Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochim Cosmochim Acta 67:4639–4654

    Google Scholar 

  • Zhu XK, Guo Y, Williams RJP, O’Nions RK, Matthews A, Belshaw NS, Canters GW, deWaal EC, Weser U, Burgess BK, Salvato B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bullen, T.D. (2012). Stable Isotopes of Transition and Post-Transition Metals as Tracers in Environmental Studies. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_10

Download citation

Publish with us

Policies and ethics