Skip to main content

Massive stars as thermonuclear reactors and their explosions following core collapse

  • Conference paper
  • First Online:
Principles and Perspectives in Cosmochemistry

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

  • 1135 Accesses

Summary

Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. D. Arnett, Supernovae and Nucleosynthesis, Princeton University Press (1996)

    Google Scholar 

  2. M. N. Saha: Phil. Mag., 40, 472 (1920)

    Google Scholar 

  3. M. N. Saha: Proc. Roy. Soc. Ser. A, 99, 135 (1921)

    ADS  Google Scholar 

  4. H. Reeves, Stellar Evolution and Nucleosynthesis, Gordon and Breach, New York, (1968)

    Google Scholar 

  5. B. J. Carr, J. Bond, W. D. Arnett, ApJ 277, 445 (1984)

    ADS  Google Scholar 

  6. B. J. Carr, ARAA 419, 904 (1994)

    Google Scholar 

  7. W. Haxton, Nuclear Astrophysics Course (1999) http://ewiserver.npl.washington.edu/phys554/phys554.html

  8. Oak Ridge National Lab, Nuclear Data for Nuclear Astrophysics http://www.phy.ornl.gov/astrophysics/data

  9. Lawrence Berkeley National Lab, Nuclear Astrophysics Reaction Rates http://ie.lbl.gov/astro/astrorate.html

  10. Joint Institute for Nuclear Astrophysics, REACLIB library http://www.nscl.msu.edu/nero/db

  11. Computational Infrastructure for Nuclear Astrophysics http://www.nucastrodata.org

  12. M. S. Smith et al., in CP1016, Origin of Matter and Evolution of Galaxies, ed. by T. Suda et al., (AIP) p.466 (2008)

    Google Scholar 

  13. C. E. Rolfs, W. S. Rodney, Cauldrons in the Cosmos, University of Chicago Press (1988)

    Google Scholar 

  14. D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, University of Chicago Press (1984)

    Google Scholar 

  15. J. N. Bahcall: Neutrino Astrophysics, Chapter 3, Cambridge University Press (1989); see also: http://www.sns.ias.edu/jnb/.

  16. R. N. Boyd An Introduction to Nuclear Astrophysics, University of Chicago Press (2008)

    Google Scholar 

  17. A. Ray, in 5th SERC School on Radioactive Ion Beams and Physics of Nuclei Away from the Line of Stability, Chandigarh, ed. by I. M. Govil, R. K. Puri (Elite publishers, New Delhi), p. 99 (2003); arXiv:astro-ph/0405568.

    Google Scholar 

  18. A. V. Filippenko, in Supernovae and Stellar Evolution, proceedings of the school and workshop in Goa, ed. by A. Ray, T. Velusamy, World Scientific, Singapore, p 34 (1991)

    Google Scholar 

  19. R. P. Harkness, J. C., Wheeler, in Supernovae, ed. by A. Petschek, Springer, Berlin, p 1 (1990)

    Google Scholar 

  20. A. Goswami, N. Prantzos, A&A 359, 191 (2000)

    ADS  Google Scholar 

  21. A. S. Eddington, Observatory 43, 341 (1920)

    ADS  Google Scholar 

  22. R. d’E. Atkinson, F. G. Houtermans, Z. Phys. 54, 656 (1929)

    Google Scholar 

  23. R. Davis, D. S. Harmer, K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968)

    ADS  Google Scholar 

  24. E. Rutherford: Nature 123, 313 (1929)

    ADS  MATH  Google Scholar 

  25. T. Kirsten, in The origin of the solar system, ed. by S. F. Dermott, New York: Wiley, p 267 (1978)

    Google Scholar 

  26. W. A. Fowler, in Proc. Welch Found. Conf. on Chemical Research, ed. by W.D. Milligan, Houston Univ. Press, p 61 (1977)

    Google Scholar 

  27. H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    ADS  MATH  Google Scholar 

  28. E. E. Salpeter, Australian J. Phys. 7, 373 (1954)

    ADS  MATH  Google Scholar 

  29. R. Schiavilla, Phys. Rev. C58, 1263 (1998)

    ADS  Google Scholar 

  30. T. Itahashi et al, Nucl. Phys. A718, 466c (2003)

    ADS  Google Scholar 

  31. LUNA Collaboration, C. Casella, et al, Nucl. Phys. A706, 203 (2002)

    Google Scholar 

  32. C. F. von Weizsäcker, Phys. Z. 38, 176 (1937)

    MATH  Google Scholar 

  33. C. F. von Weizsäcker, Phys. Z. 39, 633 (1938)

    MATH  Google Scholar 

  34. H. A. Bethe, C. L. Critchfield, Phys. Rev. 54, 248 (1938)

    ADS  Google Scholar 

  35. N. Chriestlieb et al., Nature 419, 904 (2002)

    ADS  Google Scholar 

  36. J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pefia-Garay, Phys. Rev. Lett. 90, 131301 (2003)

    ADS  Google Scholar 

  37. C. Pena-Garay, A. Serenelli, arXiv: 0811.2424 (2008)

    Google Scholar 

  38. W. Haxton, A. Serenelli, ApJ 687, 678 (2008)

    ADS  Google Scholar 

  39. G. K. Schenter, P. Vogel, Nucl. Sci. Engg. 83, 393 (1983)

    Google Scholar 

  40. E. Fermi, Nuclear Physics, Course Notes, University of Chicago Press, p 83 (1951)

    Google Scholar 

  41. H. A. Bethe, C. L. Critchfield, Phys. Rev. 54, 862 (1938)

    ADS  Google Scholar 

  42. E. Frieman, L. Motz, Phys. Rev 89, 648 (1951)

    ADS  Google Scholar 

  43. E. E. Salpeter, Phys. Rev. 88, 547 (1952); also ApJ 115, 326 (1952)

    Google Scholar 

  44. J. N. Bahcall, R. M. May, ApJ 155, 501 (1969)

    ADS  Google Scholar 

  45. H. A. Bethe, R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936)

    ADS  MATH  Google Scholar 

  46. J. N. Bahcall, C. P. Moeller, ApJ 155, 511 (1969)

    ADS  Google Scholar 

  47. J. N. Bahcall, L. S. Brow, A. Gruzinov, R. F. Sawyer, A.& A. 383, 291 (2002)

    ADS  Google Scholar 

  48. P. Quarati, A. M. Scarfone, J. Phys. G. 36, 025203 (2009)

    ADS  Google Scholar 

  49. B. W. Filippone, et al., Phys. Rev. C28, 2222 (1983)

    ADS  Google Scholar 

  50. M. Gai, Phys. Rev. C74, 025810 (2006)

    ADS  Google Scholar 

  51. W. T. Winter et al, Phys. Rev. C73, 025503 (2006)

    ADS  Google Scholar 

  52. L. van Wormer et al., ApJ 432, 326 (1994)

    ADS  Google Scholar 

  53. A. E. Champagne, M. Wiescher, Ann Rev. Nucl. Part. Sci. 42, 39 (1992)

    ADS  Google Scholar 

  54. R. K. Wallace, S. E. Woosley, ApJS, 45, 389 (1981)

    ADS  Google Scholar 

  55. M. Wiescher et al., Prog in part & Nucl Phys. 59, 51 (2007)

    ADS  Google Scholar 

  56. C. Sneden, J. J. Cowan, R. Gallino, ARAA 48, 241 (2008)

    ADS  Google Scholar 

  57. H. A. Bethe, Phys. Rev. 55, 103 and 434 (1939)

    ADS  MATH  Google Scholar 

  58. E. J. Öpik: Proc. Roy. Irish Acad. A54, 49 (1951)

    Google Scholar 

  59. E. E. Salpeter, Phys. Rev. 107, 516 (1957)

    ADS  Google Scholar 

  60. F. Hoyle, ApJS 1, 121 (1954)

    ADS  Google Scholar 

  61. F. Hoyle, D. N. F. Dunbar, W. A. Wenzel, W. Whaling, Phys. Rev., 92, 1095 (1953)

    Google Scholar 

  62. C. W. Cook, W. A. Fowler, C. C. Lauritsen, T. Lauritsen, Phys. Rev. 107, 508 (1957)

    ADS  Google Scholar 

  63. J. A. Nolen, S. M. Austin, Phys. Rev. C13, 1773 (1976)

    ADS  Google Scholar 

  64. C. Angulo, Exp Tools for Nuclear Astrophysics, Lecture Notes in Physics 764, 253 (2009)

    ADS  Google Scholar 

  65. L. Buchmann, C. A. Barnes: Nucl. Phys., A777, 254 (2006)

    ADS  Google Scholar 

  66. A. Lefebvre-Schuhl, in Frontiers in Nuclear Structure, Astrophysics and Reactions: FINUSTAR 2, ed. by P. Demetriou et al., (AIP), p 150 (2008)

    Google Scholar 

  67. S. E. Woosley, T. A. Weaver, ARAA 24, 205 (1986)

    ADS  Google Scholar 

  68. C. Hayashi, R. Hoshi, D. Sugimoto, Prog. Theor. Phys. Suppl. 22, (1951)

    Google Scholar 

  69. M. Mazarkis, W. Stephens, ApJ 171, L97 (1972)

    ADS  Google Scholar 

  70. H. Reeves, E. E. Salpeter, Phys. Rev. 116, 1505 (1959)

    ADS  Google Scholar 

  71. W. R. Hix, F. K. Thielemann, ApJ 460, 869 (1996)

    ADS  Google Scholar 

  72. F. K. Thielemann, W. D. Arnett, ApJ 295, 264 (1985)

    Google Scholar 

  73. G. M. Fuller, W. A. Fowler, M. J. Newman, ApJ 252, 715 (1982)

    ADS  Google Scholar 

  74. K. Kar, A. Ray, S. Sarkar, ApJ 434, 662 (1994)

    ADS  Google Scholar 

  75. J. -U. Nabi, M. Sajjad, Phys. Rev. C77, 055802 (2008)

    ADS  Google Scholar 

  76. K. Langanke, G. Martinez-Pinedo, nucl-th/0203071, Rev. Mod. Phys. 75, 819 (2003)

    ADS  Google Scholar 

  77. W. R. Hix et al., ApJ 667, 476 (2007)

    ADS  Google Scholar 

  78. H. Y. Chiu, Ann of Phys 15, 1 (1961)

    ADS  Google Scholar 

  79. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957)

    ADS  Google Scholar 

  80. G. Gamow, M. Schoenberg, Phys. Rev. 59, 539 (1941)

    ADS  MATH  Google Scholar 

  81. S. E. Woosley, H. -T. Janka, Nature Physics 1, 147 (2005)

    ADS  Google Scholar 

  82. H. A. Bethe, J. Wilson, ApJ 295, 14 (1985)

    ADS  Google Scholar 

  83. H. A. Bethe, G. E. Brown, J. Applegate, J. Lattimer, Nucl. Phys. A 324, 487 (1979)

    ADS  Google Scholar 

  84. W. D. Arnett, ApJ 218, 815 (1977)

    ADS  Google Scholar 

  85. S. W. Bruenn, ApJS 58, 771 (1985)

    ADS  Google Scholar 

  86. P. S. Joshi, Scientific American 300, 36 (2009)

    Google Scholar 

  87. G. E. Brown, H. A. Bethe, G. Baym, Nucl. Phys. A, 375, 481 (1982) (BBB)

    ADS  Google Scholar 

  88. G. M. Fuller, ApJ 252, 741 (1982)

    ADS  Google Scholar 

  89. A. Ray, S. M. Chitre, K. Kar, ApJ 285, 766 (1984)

    ADS  Google Scholar 

  90. H. A. Bethe, G. E. Brown, J. Applegate, J. M. Lattimer, Nucl. Phys. A 324 487 (1979)

    ADS  Google Scholar 

  91. K. Kar, A. Ray, Phys Lett 96A, 322 (1983)

    ADS  Google Scholar 

  92. A. Zaringhalam, Nucl. Phys. A 404, 599 (1983)

    ADS  Google Scholar 

  93. F. K. Sutaria, A. Ray: Phy. Rev., C52, 3460 (1995)

    ADS  Google Scholar 

  94. F. K. Sutaria, A. Ray, J. A. Sheikh, P. Ring, A&A 349, 135 (1999)

    ADS  Google Scholar 

  95. O. Civitarese, A. Ray, Physica Scripta 59, 352 (1999)

    ADS  Google Scholar 

  96. H.-T. Janka, K. Langanke, A. Marek, G. Martnez-Pinedo, B. Mller, Phys. Rept. 442, 38 (2007)

    ADS  Google Scholar 

  97. A. F. Fantina, P. Donati, P. M. Pizzochero, Phys. Lett. B 676, 140 (2009)

    ADS  Google Scholar 

  98. D. J. Dean, K. Langanke, J. M. Sampaio, Phys Rev. C66, 45802 (2002)

    ADS  Google Scholar 

  99. F. K. Sutaria, A. Ray, Phys. Rev. Lett. 79, 1599 (1997)

    ADS  Google Scholar 

  100. Sudbury Neutrino Observatory Proposal, SNO-87-12, October (1987)

    Google Scholar 

  101. J. N. Bahcall, K. Kubodera, S. Nozawa, Phys. Rev. D 38 1030 (1988)

    ADS  Google Scholar 

  102. A. S. Burrows, in Supernovae, ed. by A. G. Petschek, Springer-Verlag (1990)

    Google Scholar 

  103. L. M. Segal, Nucl. Phys. B 70, 61 (1974)

    ADS  Google Scholar 

  104. T. Weaver, S. E. Woosley, G. M. Fuller, Nuclear Astrophysics: Essays in honor of J. Wilson, ed. by J. Centrella et al., 374 (1985)

    Google Scholar 

  105. R. M. Bionta et al., Phys. Rev. Lett., 58, 1494 (1987) (IMB collaboration)

    ADS  Google Scholar 

  106. K. Hirata, et al., Phys. Rev. Lett. 58, 1490 (1987) (KII collaboration)

    ADS  Google Scholar 

  107. W. D. Arnett, J. N. Bahcall, R. P. Kirshner, S. E. Woosley, ARAA 27, 629 (1989)

    ADS  Google Scholar 

  108. D. Casper, UNO A Next Generation Detector for Nucleon Decay and Neutrino Physics meco.ps.uci.edu/lepton_workshop/talks/casper/uno.pdf (2000).

  109. K. J. Chang, hep-ex/0005046 (2000)

    Google Scholar 

  110. R. A. Chevalier, C. Fransson, in Supernovae and Gamma-Ray Bursters, ed. by Kurt Weiler, Lecture Notes in Physics, 598, 171 (2003)

    Google Scholar 

  111. S. Immler, W. H. G. Lewin, in Supernovae and Gamma-Ray Bursters, ed. by Kurt Weiler., Lecture Notes in Physics, vol. 598, p. 91 (2003)

    Google Scholar 

  112. R. A. Fesen et al., ApJ 645, 283 (2006)

    ADS  Google Scholar 

  113. J. E. Reed, J. J. Hester, A. C. Fabian, P. F. Winkler, ApJ 440, 706 (1995)

    ADS  Google Scholar 

  114. M. Ryle, F. G. Smith, Nature 162, 462 (1948)

    ADS  Google Scholar 

  115. S. P. Reynolds, ARAA 48, 89 (2008)

    ADS  Google Scholar 

  116. O. Krause et al., Science 320, 1195 (2008)

    ADS  Google Scholar 

  117. S. E. Woosley, N. Langer, T. A. Weaver, ApJ 411, 823 (1993)

    ADS  Google Scholar 

  118. G. Aldering, R. M. Humphreys, M. Richmond, AJ 107, 662 (1994)

    ADS  Google Scholar 

  119. N. Rathnasree, A. Ray, JAA 13, 3 (1992)

    Google Scholar 

  120. A. Ray, K. P. Singh, F. K. Sutaria, JAA 14, 53 (1993)

    Google Scholar 

  121. K. Nomoto et al., Nature 364, 507 (1993)

    ADS  Google Scholar 

  122. J. R. Maund, S. J. Smartt, R. P. Kudritzki, P. Podsiadlowski, G. F. Gilmore, Nature 427, 129 (2004)

    ADS  Google Scholar 

  123. T. Matheson et al., AJ 120, 1487 (2000)

    ADS  Google Scholar 

  124. R. A. Chevalier, J. Oishi, ApJ 593, L23 (2003)

    ADS  Google Scholar 

  125. C. Fransson, P. Lundqvist, R. A. Chevalier, ApJ 461, 993 (1996)

    ADS  Google Scholar 

  126. P. Chandra, A. Ray, S. Bhatnagar, ApJ, 612, 974 (2004)

    ADS  Google Scholar 

  127. R. A. Fesen, K. S. Gunderson, ApJ 470, 967 (1996)

    ADS  Google Scholar 

  128. U. Hwang et al., ApJ 615, L117 (2004)

    ADS  Google Scholar 

  129. U. Hwang, S. S. Holt, R. Petre, ApJ 537, L119 (2000)

    ADS  Google Scholar 

  130. R. Willingale et al., A&A 381, 1039 (2002)

    ADS  Google Scholar 

  131. J. S. Lazendic, D. Dewey, N. S. Schulz, C. R. Canizares, ApJ 651, 250 (2006)

    ADS  Google Scholar 

  132. J. A. Ennis et al., ApJ 652, 376 (2006)

    ADS  Google Scholar 

  133. J. D. T. Smith et al., ApJ 693, 713 (2009)

    ADS  Google Scholar 

  134. R. A. Fesen et al., AJ 122, 2644 (2001)

    ADS  Google Scholar 

  135. S. E. Woosley, T. A. Weaver, ApJS 101, 181 (1995)

    ADS  Google Scholar 

  136. J. P. Hughes et al., ApJ 528, L113 (2000)

    ADS  Google Scholar 

  137. L. Rudnick, in The 10th International Symposium on Origin of Matter and Evolution of Galaxies, Sapporo, Japan, ed. by Takuma Suda et al., AIP Conference Proceedings, Volume 1016, p. 353 (2008)

    Google Scholar 

  138. D. A. Liedahl, in X-ray Spectroscopy in Astrophysics, X EADN School Amsterdam, ed. by J. van Paradijs, J. A. M. Bleeker, Springer, Berlin, 189 (1999)

    Google Scholar 

  139. D. Porquet et al., A&A 376, 1113 (2001)

    ADS  Google Scholar 

  140. D. Dewey, S. A. Zhekov, R. McCray, R. Canizares, ApJ 676, L131 (2008)

    ADS  Google Scholar 

  141. S. Park et al., in Supernova 1987A: 20 Years After, ed. by S. Immler, K. W. Weiler, R. McCray (New York: AIP) 43 (2007)

    Google Scholar 

  142. S. A. Zhekov et al., ApJ 645, 293 (2006)

    ADS  Google Scholar 

  143. C. Fransson, C. Kozma, New Astron Rev. 46, 487 (2002)

    ADS  Google Scholar 

  144. I. Ahmad et al., Phys. Rev. C74, 065803 (2006)

    ADS  Google Scholar 

  145. A. F. Iyudin et al., A&A 284, L1 (1994)

    ADS  Google Scholar 

  146. M. Renaud et al., ApJ 647, L41 (2006)

    ADS  Google Scholar 

  147. F. K. Thielemann, K. Nomoto, M. Hashimoto, ApJ 460, 408 (1996)

    ADS  Google Scholar 

  148. T. Rauscher et al., ApJ 576, 323 (2002)

    ADS  Google Scholar 

  149. M. Limongi, A. Chieffi, ApJ 592, 404 (2003)

    ADS  Google Scholar 

  150. H. Nassar et al., Phys. Rev. Lett. 96, 041102 (2006)

    ADS  Google Scholar 

  151. S. M. Matz et al., Nature 331, 416 (1988)

    ADS  Google Scholar 

  152. J. D. Kurfess et al., ApJ 399, L137 (1992)

    ADS  Google Scholar 

  153. K. Nomoto et al., in Supernovae and Stellar Evolution, proceedings of the school and workshop in Goa, ed. by A. Ray, T. Velusamy, World Scientific, Singapore p. 116 (1991)

    Google Scholar 

  154. M. D. Leising, New Astr. Reviews 46, 529 (2002)

    ADS  Google Scholar 

  155. M. D. Leising, ApJ 651, 1019 (2006)

    ADS  Google Scholar 

  156. H. U. Zimmermann, B. Aschenbach, A&A 406, 969 (2003)

    ADS  Google Scholar 

  157. D. W. Fox, et al., MNRAS 319, 1154 (2000)

    ADS  Google Scholar 

  158. T. Nymark, C. Fransson, C. Kozma, A&A 449, 171 (2006)

    ADS  Google Scholar 

  159. P. Chandra et al., ApJ 699, 388 (2009)

    ADS  Google Scholar 

  160. T. Nymark, P. Chandra, C. Fransson, A&A 494, 179 (2009)

    ADS  Google Scholar 

  161. A. V. Filippenko, T. Matheson, L. C. Ho, ApJ 415, L103 (1993)

    ADS  Google Scholar 

  162. Ph. Podsiadlowski et al., Nature 364, 509 (1993)

    ADS  Google Scholar 

  163. S. E. Woosley et al., ApJ 429, 300 (1994)

    ADS  Google Scholar 

  164. T. Shigeyama et al., ApJ 420, 341 (1994)

    ADS  Google Scholar 

  165. A. V. Filippenko, ARAA 35, 309 (1997)

    ADS  Google Scholar 

  166. W. Li, A. V. Filippenko, S. D. Van Dyk, J. Hu, PASP 114, 403 (2002)

    ADS  Google Scholar 

  167. R. B. C. Henry, D. Branch, PASP 99, 112 (1987)

    ADS  Google Scholar 

  168. A. V. Filippenko, in Supernova 1987A and other supernova, ESO Conference and Workshop, ed. by J. Danziger and Kurt Kjaer, p 343 (1991)

    Google Scholar 

  169. N. N. Chugai, I. J. Danziger, Astron. Lett. 29, 649 (2003)

    ADS  Google Scholar 

  170. P. Chandra et al., ApJ 629, 933 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

I thank Aruna Goswami and the organizers of the School for the invitation to Kodaikanal Observatory. Discussions with Katherina Lodders and Bruce Fegley at the School and Claus Rolfs and Richard McCray in other meetings are thankfully acknowledged. I thank Poonam Chandra and Firoza Sutaria for comments on this manuscript and for long term collaboration. Nuclear astrophysics research at Tata Institute is a part of the Plan Project: 11P-409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alak Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ray, A. (2010). Massive stars as thermonuclear reactors and their explosions following core collapse. In: Goswami, A., Reddy, B. (eds) Principles and Perspectives in Cosmochemistry. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10352-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10352-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10351-3

  • Online ISBN: 978-3-642-10352-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics