Skip to main content

The Impact of Persistence Length on the Communication Efficiency of Microtubules and CNTs

  • Conference paper
Nano-Net (NanoNet 2009)

Abstract

There are similarities between microtubules in living cells and carbon nanotubes (CNTs). Both microtubules and carbon nanotubes have a similar physical structure and properties and both are capable of transporting information at the nanoscale. Microtubules and carbon nanotubes can also self-organize to create random graph structures, which can be used as communication networks. The behavior of microtubules can be understood by investigating the behavior of their synthetic counterparts, namely, carbon nanotubes (CNT). At the same time, networks of CNTs may be used for molecular-level transport in the human body for treatment of diseases. This paper seeks to examine the basic properties of the networks created by CNTs and microtubules. This behavior depends strongly on the alignment of bond segments and filaments, which in turn depends on the persistence length of the tubes. Persistence length is also important in analyzing other structures such as DNA; however, the focus in this paper is on nanotube structures and microtubules. We use graph spectral analysis for analyzing a simulated CNT network in which a network graph is extracted from the layout of the tubes and graph properties of the resultant graphs are examined. The paper presents the results of the simulation with tubes of different persistence lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A.: Exploratory Research In Molecular Communication Between Nanomachines. In: Proceedings of Genetic and Evolutionary Computation (2005), http://www.ece.gatech.edu/research/labs/bwn/NANOS/papers/Suda2005.pdf

  2. Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A., Hiyama, S., Moritani, Y.: Exploratory research in molecular communication between nanomachine, School of Information and Computer Science, UC Irvine, Tech. Rep. 05-03 (2005), http://netresearch.ics.uci.edu/mc/papers/ICS%20Tech%20Report05.pdf

  3. Moore, M.: Molecular Communication: Simulation of a Molecular Motor Communication System (2006), http://netresearch.ics.uci.edu/mc/papers/Nanotech05.pdf

  4. Moore, M., Enomoto, A., Nakano, T., Suda, T.: Simulation of a Molecular Motor Based Communication Network. In: Proceedings of the 1st International Conference on Bio Inspired Models of Network, Information and Computing Systems, vol. 1 (2006), http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04205351

  5. Moore, M., Enomoto, A., Nakano, T., Egashira, R., Suda, T., Kayasuga, A., Kojima, H., Sakakibara, H., Oiwa, K.: A Design of a Molecular Communication System for Nanomachines Using Molecular Motors. In: Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops PerCom Workshops, pp. 554–559 (2006), http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01599045

  6. Moore, M.J., Enomoto, A., Nakano, T., Kayasuga, A., Kojima, H., Sakakibara, H., Oiwa, K., Suda, T.: Molecular Communication: Simulation of Microtubule Topology. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds.) Natural Computing, Proceedings in Information and Communications Technology, vol. 1, p. 134. Springer, Japan (2008)

    Google Scholar 

  7. Dalton, B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., Baughman, R.H.: Supertough Carbon-Nanotube Fibers. Nature 423, 703 (2003)

    Article  Google Scholar 

  8. Tans, S., Verschueren, R., Dekker, C.: Room Temperature Transistor Based on a Single Carbon Nanotubes. Nature 393, 49–52 (1998)

    Article  Google Scholar 

  9. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube Molecular Wires as Chemical Sensors. Science 287(5453), 622–625 (2000), http://www.sciencemag.org/cgi/content/abstract/287/5453/622

    Article  Google Scholar 

  10. Pampaloni, F., Ernst-Ludwig, F.: Microtubule Architecture: Inspiration for Novel Carbon Nanotube-Based Biomimetic Materials. Trends in Biotechnology 26(6), 302–310 (2008)

    Article  Google Scholar 

  11. Goldmann, W.H.: Actin: A Molecular Wire, an Electrical Cable? Cell Biol. Int. 32(7), 869–870 (2008), http://dx.doi.org/10.1016/j.cellbi.2008.03.015

    Article  Google Scholar 

  12. Hilder, T.A., Hill, J.M.: Encapsulation of the Anticancer Drug Cisplatin Into Nanotubes. In: Proc. International Conference on Nanoscience and Nanotechnology ICONN, pp. 109–112 (2008)

    Google Scholar 

  13. Teker, K., Wickstrom, E., Panchapakesan, B.: Biomolecular Tuning of Electronic Transport Properties of Carbon Nanotubes via Antibody Functionalization. IEEE Sensors J. 6(6), 1422–1428 (2006)

    Article  Google Scholar 

  14. Yakobson, B., Couchman, L.: Persistence Length and Nanomechanics of Random Bundles of Nanotubes. Journal of Nanoparticle Research 8, 105–110 (2006), http://www.ingentaconnect.com/content/klu/nano/2006/00000008/00000001/00008335

    Article  Google Scholar 

  15. Lehn, J.-M.: Perspectives Supramolecular Chemistry – From Molecular Recognition Towards Molecular Information Processing, And Self-Organization. Angewandte Chemie International Edition in English 29(11), 1304–1319 (1990)

    Article  Google Scholar 

  16. Schliwa, M., Woehlke, G.: Molecular Motors. Nature 422, 759–765 (2003)

    Article  Google Scholar 

  17. Bush, S.F., Goel, S.: Graph Spectra of Carbon Nanotube Networks. In: 1st International Conference on Nano-Networks, Lausanne, Switzerland (2006), http://www.research.ge.com/_bushsf/pdfpapers/04152817GraphSpectra.pdf

  18. van den Heuvel, M.G.L., de Graaff, M.P., Dekker, C.: Molecular Sorting by Electrical Steering of Microtubules in Kinesin-Coated Channels. Science 312(5775), 910–914 (2006), http://www.sciencemag.org/cgi/content/abstract/312/5775/910

    Article  Google Scholar 

  19. Mickey, B., Howard, J.: Rigidity of Microtubules is Increased by Stabilizing Agents. J. Cell Biol. 130(4), 909–917 (1995), http://jcb.rupress.org/cgi/content/abstract/130/4/909

    Article  Google Scholar 

  20. Janson, M.E., Dogterom, M.: A Bending Mode Analysis for Growing Microtubules: Evidence for a Velocity-Dependent Rigidity. Biophys. J. 87(4), 2723–2736 (2004)

    Article  Google Scholar 

  21. Godsel, L.M., Hobbs, R.P., Green, K.J.: Intermediate Filament Assembly: Dynamics to Disease. Trends in Cell Biology 18, 28–37 (2008)

    Article  Google Scholar 

  22. Korner, J., Marton, K.: On the Capacity of Uniform Hypergraphs. IEEE Trans. Inf. Theory 36(1), 153–156 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lovasz, L.: On the Shannon Capacity of a Graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Bush, S.F., Goel, S. (2009). The Impact of Persistence Length on the Communication Efficiency of Microtubules and CNTs. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics