Skip to main content

Luminescent Dendrimers as Ligands and Sensors of Metal Ions

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

Abstract

Suitably designed luminescent dendrimers can play the role of ligands for luminescent and nonluminescent metal ions. This combination leads to species capable of exhibiting interesting and unusual properties, including (1) shielding excited states from quenching processes, (2) light harvesting, (3) conversion of incident UV light into visible or infra red emission, and (4) metal ions sensing with signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry. Wiley-VCH, Chichester (b) Newkome GR, Vögtle F (2001) Dendrimers and dendrons. Wiley-VCH, Weinheim (c) Fréchet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, Chichester

    Google Scholar 

  2. For some reviews, see: (a) Majoral J-P (2007) Influence of cationic phosphorus dendrimers on the surfactant-induced synthesis of mesostructured nanoporous silica. New J Chem 31:1259–1263 (b) Puntoriero F, Nastasi F, Cavazzini M et al (2007) Coupling synthetic antenna and electron donor species: a tetranuclear mixed-metal Os(II)–Ru(II) dendrimer containing six phenothiazine donor subunits at the periphery. Coord Chem Rev 251:536–545 (c) Méry D, Astruc D (2006) Dendritic catalysis: major concepts and recent progress. Coord Chem Rev 250:1965–1979 (d) Astruc D (2006) Dendrimers and nanoscience. C R Chimie 6(6–8) (e) Tomalia DA, Fréchet JMJ (eds) (2005) Special issue: dendrimers and dendritic polymers. In: Prog Polym Sci 30(3–4) (f) Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704 (g) Chase PA, Klein Gebbink RJM, van Koten G (2004). Where organometallics and dendrimers merge: the incorporation of organometallic species into dendritic molecules. J Organomet Chem 689:4016–4054 (h) Ong W, Gomez-Kaifer M, Kaifer AE (2004) Dendrimers as guests in molecular recognition phenomena. Chem Commun 15:1677–1683 (i) Ballauff M, Likos CN (2004) Dendrimers in solution: insight from theory and simulation. Angew Chem Int Ed 43:2998–3020 (l) Caminade A-M, Majoral J-P (2004) Nanomaterials based on phosphorus dendrimers. Acc Chem Res 37:341–348

    Google Scholar 

  3. (a) Hwang S-H, Shreiner CD, Moorefield CN et al (2007) Recent progress and applications for metallodendrimers. New J Chem 31:1192–1217 (b) Ceroni P, Bergamini G, Marchioni F et al (2005) Luminescence as a tool to investigate dendrimer properties. Prog Polym Sci 30:453–473 (c) Balzani V, Ceroni P, Maestri M et al (2003) Luminescent dendrimers. Recent advances. Top Curr Chem 228:159–191 (d) Nierengarten JF, Armaroli N, Accorsiet G et al (2003) [60]Fullerene: a versatile photoactive core for dendrimer chemistry. Chem Eur J 9:36–41

    Google Scholar 

  4. (a) Varnavski O, Yan X, Mongin O et al (2007) Strongly interacting organic conjugated dendrimers with enhanced two-photon absorption. J Phys Chem C 111:149–162 (b) Ahn TS, Thompson AL, Bharathi P et al (2006) Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: the role of delocalized excited states and the scaling of light-harvesting efficiency with dendrimer size. J Phys Chem B 110:19810–19819 (c) Ortiz W, Krueger BP, Kleiman VD et al (2005) Energy transfer in the nanostar: the role of Coulombic coupling and dynamics. J Phys Chem B 109:11512–11519 (d) Thompson AL, Gaab KM, Xu J et al (2004) Variable electronic coupling in phenylacetylene dendrimers: the role of Förster, dexter, and charge–transfer interactions. J Phys Chem A 108:671–682

    Google Scholar 

  5. (a) Wöll D, Uji-i H, Schnitzler T et al (2008) Radical polymerization tracked by single molecule spectroscopy. Angew Chem Int Ed 47:783–787 (b) Uji-i H, Melnikov SM, Deres A et al (2006) Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer 47:2511–2518 (c) De Schryver FC, Vosch T, Cotlet M et al (2005) Energy dissipation in multichromophoric single dendrimers. Acc Chem Res 38:514–522 (d) Cotlet M, Masuo S, Luo G et al (2004) Probing conformational dynamics in single donor–acceptor synthetic molecules by means of photoinduced reversible electron transfer. Proc Natl Acad Sci 101:14343–14348

    Google Scholar 

  6. For some recent examples see: (a) Giansante C, Ceroni P, Balzani V et al (2008) Self-assembly of a light-harvesting antenna formed by a dendrimer, a RuII complex, and a NdIII ion. Angew Chem Int Ed 47:5422–5425 (b) Wang J-L, Yan J, Tang Z-M et al (2008) Gradient shape-persistent π-conjugated dendrimers for light-harvesting: synthesis, photophysical properties, and energy funneling. J Am Chem Soc 130:9952–9962 (c) Larsen J, Puntoriero F, Pascher T et al (2007) Extending the light-harvesting properties of transition-metal dendrimers. ChemPhysChem 8:2643–2651

    Google Scholar 

  7. (a) Furuta P, Brooks J, Thompson ME et al (2003) Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: a model for single-layer multichromophoric organic light-emitting diodes. J Am Chem Soc 125:13165–13172 (b) Hahn U, Gorka M, Vögtle F et al (2002) Light-harvesting dendrimers: efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew Chem Int Ed 41:3595–3598

    Google Scholar 

  8. (a) Harpham MR, Suezer O, Ma C-Q et al (2009) Thiophene dendrimers as entangled photon sensor materials. J Am Chem Soc 131:973–979 (b) Xu M-H, Lin J, Hu Q-S et al (2002) Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124:14239–14246 (c) Pugh VJ, Hu QS, Zuo X et al (2001) Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols. J Org Chem 66:6136–6140

    Google Scholar 

  9. For some recent examples, see: (a) Puntoriero F, Bergamini G, Ceroni P et al (2008) A fluorescent guest encapsulated by a photoreactive azobenzene dendrimer. New J Chem 32:401–406 (b) Ramakrishna G, Bhaskar A, Bauerle P et al (2008) Oligothiophene dendrimers as new building blocks for optical applications. J Phys Chem A 112:2018–2026 (c) Cao D, Dobis S, Gao C et al (2007) Optical switching and antenna effect of dendrimers with an anthracene core. Chem Eur J 13:9317–9323 (d) Li W-S, Kim KS, Jiang D-L et al (2006) Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold: remarkable dendrimer effects on photoinduced charge separation. J Am Chem Soc 128:10527–10532 (e) Ahn T-S, Nantalaksakul A, Dasari RR et al (2006) Energy and charge transfer dynamics in fully decorated benzyl ether dendrimers and their disubstituted analogues. J Phys Chem B 110:24331–24339

    Google Scholar 

  10. (a) Balzani V, Bergamini G, Marchioni F et al (2007) Electronic spectroscopy of metal complexes with dendritic ligands. Coord Chem Rev 251:525–535 (b) Ceroni P, Vicinelli V, Maestri M et al (2004) Luminescent dendrimers as ligands for metal ions. J Organomet Chem 689:4375–4383

    Google Scholar 

  11. (a) Paulo PMR, Gronheid R, De Schryver FC et al (2003) Porphyrin–dendrimer assemblies studied by electronic absorption spectra and time-resolved fluorescence. Macromolecules 36:9135–9144 (b) Epperson JD, Ming LJ, Woosley BD et al (1999) NMR study of dendrimer structures using paramagnetic Cobalt(II) as a probe. Inorg Chem 38:4498–4502 (c) Ottaviani MF, Bossamann S, Turro NJ et al (1994) Characterization of starburst dendrimers by the EPR technique. 1. Copper complexes in water solution. J Am Chem Soc 116:661–671

    Google Scholar 

  12. See e.g. (a) Yamamoto K, Imaoka T, Chun W-J et al (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402 (b) Ornelas C, Aranzaes JR, Salmon L et al (2008) “Click” Dendrimers: synthesis, redox sensing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. Chem Eur J 14:50–64 (c) Ye H, Crooks RM (2007) Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. J Am Chem Soc 129:3627–3633 (d) Dend S, Locklin J, Patton D et al (2005) Thiophene dendron jacketed poly(amidoamine) dendrimers: nanoparticle synthesis and adsorption on graphite. J Am Chem Soc 127:1744–1751

    Google Scholar 

  13. For some recent examples, see e.g.: (a) Oh JB, Nah M-K, Kim YH et al (2007) ErIII-cored complexes based on dendritic ptii-porphyrin ligands: synthesis, near-IR emission enhancement, and photophysical studies. Adv Funct Mater 17:413–424 (b) Li B-L, Liu Z-T, Deng G-J et al (2007) The Synthesis of dendritic β-diketonato ligands and their europium complexes. Eur J Org Chem 508–516 (c) Baek NS, Kim YH, Roh S-G et al (2006) The first inert and photostable encapsulated lanthanide(III) complexes based on dendritic 9,10-diphenylanthracene ligands: synthesis, strong near-infrared emission enhancement, and photophysical studies. Adv Funct Mater 16:1873–1882 (d) Shen L, Shi M, Li F et al (2006) Polyaryl ether dendrimer with a 4-phenylacetyl-5-pyrazolone-based terbium(III) complex as core: synthesis and photopysical properties. Inorg Chem 45:6188–6197 (e) Cross J-P, Lauz M, Badger PD et al (2004) Polymetallic lanthanide complexes with PAMAM-naphthalimide dendritic ligands: luminescent lanthanide complexes formed in solution. J Am Chem Soc 126:16278–16279 (f) Larsen J, Puntoriero F, Pascher T et al (2007) Extending the light-harvesting properties of transition-metal dendrimers. ChemPhysChem 8:2643–2651

    Google Scholar 

  14. (a) Imaoka T, Tanaka R, Arimoto S et al (2005) Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core. J Am Chem Soc 127:13896–13905 (b) Kimoto A, Cho J-S, Higuchi M et al (2004) Synthesis of asymmetrically arranged dendrimers with a carbazole dendron and a phenylazomethine dendron. Macromolecules 37:5531–5537 (c) Higuchi M, Tsuruta M, Chiba H et al (2003) Control of stepwise radial complexation in dendritic polyphenylazomethines. J Am Chem Soc 125:9988–9997

    Google Scholar 

  15. (a) Bergamini G, Saudan C, Ceroni P et al (2004) Proton-driven self-assembled systems based on cyclam-cored dendrimers and [Ru(bpy)(CN)4]2−. J Am Chem Soc 126:16466–16471 (b) van de Coevering R, Kuil M, Gebbink JMK et al (2002) A polycationic dendrimer as noncovalent support for anionic organometallic complexes. Chem Commun 15:1636–1637

    Google Scholar 

  16. (a) Puntoriero F, Bergamini G, Ceroni P et al (2008) Azacrown ethers with naphthyl branches. Fluorescence properties, protonation and metal coordination. J Inorg Organomet Polym Mater 18:189–194 (b) Antoni P, Malkoch M, Vamvounis G et al (2008) Europium confined cyclen dendrimers with photophysically active triazoles. J Mater Chem 18:2545–2554

    Google Scholar 

  17. (a) Bergamini G, Ceroni P, Maestri M et al (2007) Cyclam cored luminescent dendrimers as ligands for Co(II), Ni(II) and Cu(II) ions. Inorg Chim Acta 360:1043–1051 (b) Branchi B, Ceroni P, Bergamini G et al (2006) A cyclam core dendrimer containing dansyl and oligoethylene glycol chains in the branches: protonation and metal coordination. Chem Eur J 12:8926–8934 (c) Gu T, Whitesell JK, Fox MA (2006) Intramolecular charge transfer in 1:1 Cu(II)/pyrenylcyclam dendrimer complexes. J Phys Chem B 110:25149–25152 (d) Bergamini G, Ceroni P, Balzani V et al (2005) Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions. J Mater Chem 15:2959–2964 (e) Saudan C, Ceroni P, Vicinelli V et al (2004) Simple and dendritic cyclam derivatives. Photophysical properties, effect of protonation and Zn2+ coordination, preliminary screening as inhibitors of tumour cell growth. Supramol Chem 16:541–548 (f) Saudan C, Ceroni P, Vicinelli V et al (2004) Cyclam-based dendrimers as ligands for lanthanide ions. Dalton Trans 10:1597–1600 (g) Saudan C, Balzani V, Gorka M et al (2004) Dendrimers as ligands: an investigation into the stability and kinetics of Zn2+ complexation by dendrimers with 1,4,8,11-tetraazacyclotetradecane (Cyclam) cores. Chem Eur J 10:899–905 (h) Saudan C, Balzani V, Gorka M et al (2003) Dendrimers as ligands. Formation of a 2:1 luminescent complex between a dendrimer with a 1,4,8,11-tetraazacyclotetradecane (Cyclam) core and Zn2+. J Am Chem Soc 125:4424–4425

    Google Scholar 

  18. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  19. (a) Sarkar K, Dhara K, Nandi M et al (2009) Selective zinc(II)-ion fluorescence sensing by a functionalized mesoporous material covalently grafted with a fluorescent chromophore and consequent biological applications. Adv Funct Mater 19:223–234 (b) Gouanvé F, Schuster T, Allard E et al (2007) Fluorescence quenching upon binding of copper ions in dye-doped and ligand-capped polymer nanoparticles: a simple way to probe the dye accessibility in nano-sized templates. Adv Funct Mater 17:2746–2756 (c) Yan J, Estevez MC, Smith JE et al (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44–50

    Google Scholar 

  20. For some recent reviews, see: (a) Astruc D, Ornelas C, Ruiz J (2008) Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res 41:841–856 (b) Kaifer AE (2007) Electron transfer and molecular recognition in metallocene-containing dendrimers. Eur J Inorg Chem 5015–5027

    Google Scholar 

  21. See for example: (a) Balzani V, Campagna S, Denti G et al (1998) Designing dendrimers based on transition-metal complexes. light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26–34 (b) Huisman B-H, Schönherr H, Huck WTS et al (1999) Surface-confined metallodendrimers: isolated nanosize molecules. Angew Chem Int Ed 38:2248–2251 (c) McClenaghan ND, Loiseau F, Puntoriero F et al (2001) Light-harvesting metal dendrimers appended with additional organic chromophores: a tetranuclear heterometallic first-generation dendrimer exhibiting unusual absorption features. Chem Commun 24:2634–2635

    Google Scholar 

  22. For some examples, see e.g.: (a) Hogan CF, Harris AR, Bond AM et al (2006) Electrochemical studies of porphyrin-appended dendrimers. PhysChemChemPhys 8:2058–2065 (b) Jang W-D, Nishiyama N, Zhang G-D et al (2005) Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy. Angew Chem Int Ed 44:419–423 (c) Loiseau F, Campagna S, Hameurlaine A et al (2005) Dendrimers made of porphyrin cores and carbazole chromophores as peripheral units. Absorption spectra, luminescence properties, and oxidation behavior. J Am Chem Soc 127:11352–11363 (d) Chavan SA, Maes W, Gevers LEM et al (2005) Porphyrin-functionalized dendrimers: synthesis and application as recyclable photocatalysts in a nanofiltration membrane reactor. Chem Eur J 11:6754–6762 (e) Brinas RP, Troxler T, Hochstrasser RM et al (2005) Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J Am Chem Soc 127:11851–11682

    Google Scholar 

  23. (a) Lukeš I, Kotek J, Vojtíšek P et al (2001) Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues. Coord Chem Rev 216–217:287–312 (b) Hay BP, Hancock RD (2001) The role of donor group orientation as a factor in metal ion recognition by ligands. Coord Chem Rev 212:61–87

    Google Scholar 

  24. (a) Bianchi A, Micheloni M, Paletti P (1991) Thermodynamic aspects of the polyazacycloalkane complexes with cations and anions. Coord Chem Rev 110:17–113 (b) Kimura E (1994) Macrocyclic polyamine zinc(II) complexes as advanced models for zinc(II) enzymes. Prog Inorg Chem 41:443–491 (c) Meyer M, Dahaoui-Gindrey V, Lecomte C et al (1998) Conformations and coordination schemes of carboxylate and carbamoyl derivatives of the tetraazamacrocycles cyclen and cyclam, and the relation to their protonation states. Coord Chem Rev 178:1313–1405 (d) Fabbrizzi L, Licchelli M, Pallavicini P et al 2001 Supramolecular assemblies containing metallocyclam subunits. Supramol Chem 13 569–582

    Google Scholar 

  25. Liang X, Sadler PJ (2004) Cyclam complexes and their applications in medicine. Chem Soc Rev 33:246–266

    Article  CAS  Google Scholar 

  26. Sibert JW, Cory AH, Cory JC (2002) Lipophilic derivatives of cyclam as new inhibitors of tumor cell growth. Chem Commun 2:154–155

    Article  Google Scholar 

  27. (a) Brucher E, Sherry AD (2001) Stability and toxicity of contrast agents. In: Merbach AE, Toth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York (b) Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Google Scholar 

  28. (a) Paisey SJ, Sadler PJ (2004) Anti-viral cyclam macrocycles: rapid zinc uptake at physiological pH. Chem Commun 3:306–307 (b) Liang X, Weishäupl M, Parkinson JA et al (2003) Selective recognition of configurational substates of zinc cyclam by carboxylates: implications for the design and mechanism of action of anti-HIV agents. Chem Eur J 9:4709–4717 (c) Kimura E, Koike T, Inouye Y (1999) Macrocyclic polyamines and their metal complexes: a novel type of anti-HIV agent. In: Hay RW, Dilworth JR, Nolan KB (eds) Perspective on bioinorganic chemistry, vol 4. JAI Press Inc, Stamford

    Google Scholar 

  29. Saudan C, Balzani V, Ceroni P et al (2003) Dendrimers with a cyclam core. Absorption spectra, multiple luminescence, and effect of protonation. Tetrahedron 59:3845–3852

    Article  CAS  Google Scholar 

  30. Ben Othman A, Lee JW, Abidi R (2007) A novel pyrenyl-appended tricalix[4]arene for fluorescence-sensing of Al(III). Tetrahedron 63:10793–10800

    Article  CAS  Google Scholar 

  31. Vögtle F, Gestermann S, Kauffmann C et al (1999) Poly(propylene amine) dendrimers with peripheral dansyl units: protonation, absorption spectra, photophysical properties, intradendrimer quenching, and sensitization processes. J Am Chem Soc 121:12161–12166

    Article  Google Scholar 

  32. (a) Balzani V, Ceroni P, Gestermann S et al (2000) Dendrimers as fluorescent sensors with signal amplification. Chem Commun 10:853–854 (b) Vögtle F, Gestermann S, Kauffmann C et al (2000) Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc 122:10398–10404

    Google Scholar 

  33. For some recent reviews, see: (a) Leonard JP, Nolan CB, Stomeo F et al (2007) Photochemistry and photophysics of coordination compounds: lanthanides. Top Curr Chem 281:1–43 (b) Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077 (c) Parker D (2000) Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord Chem Rev 205:109–130

    Google Scholar 

  34. Escribano P, Julian-Lopez B, Planelles-Arago J et al (2008) Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. J Mater Chem 18:23–40

    Article  CAS  Google Scholar 

  35. (a) de Bettencourt-Dias A (2007) Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans 22:2229–2241 (b) Kuriki K, Koike Y, Okamoto Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102:2347–2356

    Google Scholar 

  36. (a) Parker D, Dickins RS, Puschmann H et al (2002) Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010 (b) Sabbatini N, Guardigli M, Lehn J-M (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228

    Google Scholar 

  37. See e.g.: Hebbink GA, Klink SI, Grave L et al (2002) Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes. ChemPhysChem 3:1014–1018

    Google Scholar 

  38. Kawa M, Fréchet JMJ (1998) Self-Assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem Mater 10:286–296

    Article  CAS  Google Scholar 

  39. Sabbatini N, Dellonte S, Bonazzi A et al (1986) Photoinduced electron-transfer reactions of poly(pyridine)ruthenium(II) complexes with europium(III/II) cryptates. Inorg Chem 25:1738–1742

    Article  CAS  Google Scholar 

  40. Kawa M, Takahagi T (2004) Improved antenna effect of terbium(III)-cored dendrimer complex and green-luminescent hydrogel by radical copolymerization. Chem Mater 16:2282–2286

    Article  CAS  Google Scholar 

  41. Balzani V, Ceroni P, Gestermann S et al (2000) Effect of protons and metal ions on the fluorescence properties of a polylysin dendrimer containing twenty four dansyl units. J Chem Soc Dalton Trans 21:3765–3771

    Google Scholar 

  42. (a) Vicinelli V, Ceroni P, Maestri M et al (2002) Luminescent lanthanide ions hosted in a fluorescent polylysin dendrimer. Antenna-like sensitization of visible and near-infrared emission. J Am Chem Soc 124:6461–6468 (b) Vögtle F, Gorka M, Vicinelli V et al (2001) A Dendritic antenna for near-infrared emission of Nd3+ ions. ChemPhysChem 2:769–773

    Google Scholar 

  43. Cross J-P, Lauz M, Badger PD et al (2004) Polymetallic lanthanide complexes with PAMAM-naphthalimide dendritic ligands: luminescent lanthanide complexes formed in solution. J Am Chem Soc 126:16278–16279

    Article  CAS  Google Scholar 

  44. (a) Beeby A, Parker D, Williams JAG (1996) Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores. J Chem Soc Perkin Trans 2 1565–1579 (b) Tung C-H, Wu L-Z (1996) Enhancement of intramolecular excimer formation, photodimerization and energy transfer of naphthalene end-labelled poly(ethylene glycol) oligomers via complexation of alkali-metal and lanthanide cations. J Chem Soc Faraday Trans 92:1381–1385 (c) Parker D, Williams JAG (1995) Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores. J Chem Soc Perkin Trans 2 1305–1314

    Google Scholar 

  45. (a) Ward MD (2006) [Ru(bipy)(CN)4]2− and its derivatives: photophysical properties and its use in photoactive supramolecular assemblies. Coord Chem Rev 250:3128–3141 (b) Scandola F, Indelli MT (1988) Second sphere donor acceptor interactions in excited states of coordination compounds. Ruthenium(II) bipyridine cyano complexes. Pure Appl Chem 60:973–980 (c) Balzani V, Sabbatini N, Scandola F (1986) “Second-sphere” photochemistry and photophysics of coordination compounds. Chem Rev 86:319–337

    Google Scholar 

  46. For some recent papers, see: (a) Lazarides T, Easun TL, Veyne-Marti C et al (2007) Structural and photophysical properties of adducts of [Ru(bipy)(CN)4]2− with different metal cations: metallochromism and its use in switching photoinduced energy transfer. J Am Chem Soc 129:4014–4027 (b) Bernhardt PV, Bozoglian F, Font-Bardia M et al (2007) The influence of ligand substitution at the electron donor center in molecular cyano-bridged mixed-valent CoIII/FeII and CoIII/RuII complexes. Eur J Inorg Chem 2007:5270–5276 (c) Davies GM, Pope SJA, Adams H et al (2005) Structural and photophysical properties of coordination networks combining [Ru(bipy)(CN)4]2− Anions and lanthanide(III) cations: rates of photoinduced ru-to-lanthanide energy transfer and sensitized near-infrared luminescence. Inorg Chem 44:4656–4665 (d) Kovács M, Horváth A (2004) The effect of H/D-bond solute–solvent interaction on deactivation channels of MLCT excited state of [Ru(bpy)(CN)4]2−. J Photochem Photobiol A Chem 163:13–19 (e) Loiseau F, Marzanni G, Quici S et al (2003) An artificial antenna complex containing four Ru(bpy) 2+3 -type chromophores as light-harvesting components and a Ru(bpy)(CN) 2−4 subunit as the energy trap. A structural motif which resembles the natural photosynthetic systems. Chem Commun 2:286–287

    Google Scholar 

  47. Demchenko AP (2010) Collective effects influencing fluorescence emission. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:107–132

    Google Scholar 

  48. Reppy MA (2010) Structure, emissive properties and reporting abilities of conjugated polymers. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:357–388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ceroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergamini, G., Marchi, E., Ceroni, P. (2010). Luminescent Dendrimers as Ligands and Sensors of Metal Ions. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_8

Download citation

Publish with us

Policies and ethics