Skip to main content

Conjugates, Complexes, and Interlocked Systems Based on Squaraines and Cyanines

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

Abstract

This chapter summarizes recent developments of red and near infrared fluorescent probes and labels based on cyanine and squaraine dyes encapsulated in macrocycles, and embedded in or bound to proteins, aptamers, dendrimers, and micro- or nano-particles. Combining these dyes with another macromolecular carrier- or host-molecule may have a positive impact on one or more of the following spectral and photophysical properties: water-solubility, brightness, fluorescence lifetimes, as well as chemo- and photostability, which promises great potential for fluorescence-based biomedical applications, pharmaceutical research, and clinical diagnostics. In general, the resulting properties of these compositions are strongly dependent on the type of dye molecule as well as the nature of the host or carrier macromolecule.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  2. Guether R, Reddington MV (1997) Photostable cyanine dye β-cyclodextrin conjugate. Tetrahedron Lett 38:6167–6170

    Article  CAS  Google Scholar 

  3. Arunkumar E, Forbes CC, Smith BD (2005) Improving the properties of organic dyes by molecular encapsulation. Eur J Org Chem 2005:4051–4059

    Article  Google Scholar 

  4. Buston JEH, Young JR, Anderson HL (2000) Rotaxane-encapsulated cyanine dyes: enhanced fluorescence efficiency and photostability. Chem Commun 11:905–906

    Google Scholar 

  5. Frampton MJ, Anderson HL (2007) Insulated molecular wires. Angew Chem Int Ed 46:1028–1064

    Article  CAS  Google Scholar 

  6. Felder T (2007) Von Rotaxanen als potenziellen Enzym-Mimetika zu massenspektrometrischen Untersuchungen dendritischer Verbindungen in der hochverdünnten Gasphase. PhD thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn

    Google Scholar 

  7. Matsuzawa Y, Tamura SI, Matsuzawa N, Ata M (1994) Light stability of a β-cyclodextrin inclusion complex of a cyanine dye. J Chem Soc Faraday Trans 90:3517–3520

    Article  CAS  Google Scholar 

  8. Constantin TP, Silva GL, Robertson KL, Hamilton TP, Fague K, Waggoner AS, Armitage BA (2008) Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org Lett 10:1561–1564

    Article  CAS  Google Scholar 

  9. Aricó F, Badjic JD, Cantrill SJ, Flood AH, Leung KCF, Liu Y, Stoddart JF (2005) Templated synthesis of interlocked molecules. Top Curr Chem 249:203–259

    Google Scholar 

  10. Schalley CA, Weilandt T, Brüggemann J, Vögtle F (2004) Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Top Curr Chem 248:141–200

    Article  Google Scholar 

  11. Hübner GM, Reuter C, Seel C, Vögtle F (2000) Rotaxane synthesis via nucleophilic substitution reactions: the trapping of electrophilic threads by organic anion-wheel complexes. Synthesis 1:103–108

    Google Scholar 

  12. Dünnwald T, Jäger R, Vögtle F (1997) Synthesis of rotaxane assemblies. Chem Eur J 3:2043–2051

    Article  Google Scholar 

  13. Leigh DA, Venturini A, Wilson AJ, Wong JKY, Zerbetto F (2004) The mechanism of formation of amide-based interlocked compounds: prediction of a new rotaxane-forming motif. Chem Eur J 10:4960–4969

    Article  CAS  Google Scholar 

  14. Yoon I, Narita M, Shimizu T, Asakawa M (2004) Threading-followed-by-shrinking protocol for the synthesis of a [2]rotaxane incorporating a Pd(II)-salophen moiety. J Am Chem Soc 126:16740–16741

    Article  CAS  Google Scholar 

  15. Kameta N, Hiratani K, Nagawa Y (2004) A novel synthesis of chiral rotaxanes via covalent bond formation. Chem Commun 4:466–467

    Article  Google Scholar 

  16. Aucagne V, Berna J, Crowley JD, Goldup SM, Hänni KD, Leigh DA, Lusby PJ, Ronaldson VE, Slawin AMZ, Viterisi A, Walker DB (2007) Catalytic “active-metal” template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the Cu(I)-catalyzed azide-alkyne 1, 3-cycloaddition. J Am Chem Soc 129:11950–11963

    Article  CAS  Google Scholar 

  17. Gatti FG, Leigh DA, Nepogodiev SA, Slawin AMZ, Teat SJ, Wong JKY (2001) Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. J Am Chem Soc 123:5983–5989

    Article  CAS  Google Scholar 

  18. Alfimov MV (2004) Photonics of supramolecular nanostructures. Russ Chem Bull 53:1357–1368

    Article  CAS  Google Scholar 

  19. Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH Verlag GmbH & Co, Weinheim

    Book  Google Scholar 

  20. Buschmann HJ, Schollmeyer E (1997) Cucurbituril and β-cyclodextrin as hosts for the complexation of organic dyes. J Incl Phenom Macrocycl Chem 29:167–174

    Article  CAS  Google Scholar 

  21. Park JS, Wilson JN, Hardcastle KI, Bunz UHF, Srinivasarao M (2006) Reduced fluorescence quenching of cyclodextrin–acetylene dye rotaxanes. J Am Chem Soc 128:7714–7715

    Article  CAS  Google Scholar 

  22. Kasatani K, Kawasaki M, Sato H (1984) Lifetime shortening of the photoisomer of a cyanine dye by inclusion in a cyclodextrin cavity as revealed by transient absorption spectroscopy. J Phys Chem 88:5451–5453

    Article  CAS  Google Scholar 

  23. Kasatani K, Ohashi M, Kawasaki M, Sato H (1987) Cyanine dye–cyclodextrin system. Enhanced dimerization of the dye. Chem Lett 16:1633–1636

    Article  Google Scholar 

  24. Rao TVS, Huff JB, Bieniarz C (1998) Supramolecular control of photophysical properties of cyanine dyes. Tetrahedron 54:10627–10634

    Article  CAS  Google Scholar 

  25. Moritz ED, Sahyun MRV (2005) Spectroscopic studies of β-cyclodextrin-complexed cyanine dyes. J Photochem Photobiol A Chem 169:211–220

    Article  CAS  Google Scholar 

  26. Yau CMS, Pascu SI, Odom SA, Warren JE, Klotz EJF, Frampton MJ, Williams CC, Coropceanu V, Kuimova MK, Phillips D, Barlow S, Brédas JL, Marder SR, Millar V, Anderson HL (2008) Stabilisation of a heptamethine cyanine dye by rotaxane encapsulation. Chem Commun 25:2897–2899

    Article  Google Scholar 

  27. Buston JEH, Marken F, Anderson HL (2001) Enhanced chemical reversibility of redox processes in cyanine dye rotaxanes. Chem Commun 11:1046–1047

    Article  Google Scholar 

  28. Wang LQ, Zhao L, Nie WW, Zheng LH, Wang JD, Li QR, Zhai J, Liu ZW, Peng XJ (2008) Syntheses and properties of photostable near-infrared cyanines and their cyclodextrin conjugates. Chin Chem Lett 19:739–741

    Article  Google Scholar 

  29. Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconjug Chem 14:909–918

    Article  CAS  Google Scholar 

  30. Klotz EJF, Claridge TDW, Anderson HL (2006) Homo- and hetero-[3]rotaxanes with two π-systems clasped in a single macrocycle. J Am Chem Soc 128:15374–15375

    Article  CAS  Google Scholar 

  31. Gadde S, Batchelor EK, Weiss JP, Ling Y, Kaifer AE (2008) Control of H- and J-aggregate formation via host–guest complexation using cucurbituril hosts. J Am Chem Soc 130:17114–17119

    Article  CAS  Google Scholar 

  32. Batchelor EK, Gadde S, Kaifer AE (2010) Host–guest control on the formation of pinacyanol chloride H-aggregates in anionic polyelectrolyte solutions. Supramol Chem 22:40–45

    Article  CAS  Google Scholar 

  33. Gadde S, Batchelor EK, Kaifer AE (2009) Controlling the formation of cyanine dye H- and J-aggregates with cucurbituril hosts in the presence of anionic polyelectrolytes. Chem Eur J 15:6025–6031

    Article  CAS  Google Scholar 

  34. Mohanty J, Pal H, Ray AK (2007) Supramolecular dye laser with cucurbit[7]uril in water. Chem Phys Chem 8:54–56

    Article  CAS  Google Scholar 

  35. Jeon YJ, Kim SY, Ko YH, Sakamoto S, Yamaguchi K, Kim K (2005) Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org Biomol Chem 3:2122–2125

    Article  CAS  Google Scholar 

  36. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

    Book  Google Scholar 

  37. Gellman SH (1997) Introduction: molecular recognition. Chem Rev 97:1231–1232

    Article  CAS  Google Scholar 

  38. Jon SY, Ko YH, Park SH, Kim HJ, Kim K (2001) A facile, stereoselective [2 + 2] photoreaction mediated by cucurbit[8]uril. Chem Commun 19:1938–1939

    Google Scholar 

  39. Pattabiraman M, Natarajan A, Kaliappan R, Mague JT, Ramamurthy V (2005) Template directed photodimerization of trans-1,2-bis(n-pyridyl)ethylenes and stilbazoles in water. Chem Commun 36:4542–4544

    Article  Google Scholar 

  40. Jon SY, Selvapalam N, Oh DH, Kang JK, Kim SY, Jeon YJ, Lee JW, Kim K (2003) Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J Am Chem Soc 125:10186–10187

    Article  CAS  Google Scholar 

  41. Burnett CA, Lagona J, Wu A, Shaw JA, Coady D, Fettinger JC, Dayb AI, Isaacs L (2003) Preparation of glycoluril monomers for expanded cucurbit[n]uril synthesis. Tetrahedron 59:1961–1970

    Article  CAS  Google Scholar 

  42. Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J (2007) Functionalized cucurbiturils and their applications. Chem Soc Rev 36:267–279

    Article  CAS  Google Scholar 

  43. Isaacs L (2009) Cucurbit[n]urils: from mechanism to structure and function. Chem Commun 6:619–629

    Article  Google Scholar 

  44. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630

    Article  CAS  Google Scholar 

  45. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  46. Koner AL, Nau WM (2007) Cucurbituril encapsulation of fluorescent dyes. Supramol Chem 19:55–66

    Article  CAS  Google Scholar 

  47. Petrov NK, Ivanov DA, Golubkov DV, Gromov SP, Alfimov MV (2009) The effect of cucurbit[7]uril on photophysical properties of aqueous solution of 3,3′-diethylthiacarbocyanine iodide dye. Chem Phys Lett 480:96–99

    Article  CAS  Google Scholar 

  48. Nau W, Mohanty J (2009) US Patent 7,511,284

    Google Scholar 

  49. Terpetschnig E, Wolfbeis OS (1998) Luminescent probes for NIR sensing applications. In: Daehne S, Resch-Genger U, Wolfbeis OS (eds) Near-infrared dyes for high technology applications, vol 53, NATO ASI Ser. 3. Kluwer Acad Publ, Dordrecht, pp 161–182

    Chapter  Google Scholar 

  50. Patsenker L, Tatarets A, Kolosova O, Obukhova O, Povrozin Y, Fedyunyayeva I, Yermolenko I, Terpetschnig E (2008) Fluorescent probes and labels for biomedical applications. Ann N Y Acad Sci 1130:179–187

    Article  CAS  Google Scholar 

  51. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  52. Arunkumar E, Forbes CC, Noll BC, Smith BD (2005) Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. J Am Chem Soc 127:3288–3289

    Article  CAS  Google Scholar 

  53. Arunkumar E, Fu N, Smith BD (2006) Squaraine-derived rotaxanes: highly stable, fluorescent near-IR dyes. Chem Eur J 12:4684–4690

    Article  CAS  Google Scholar 

  54. Fu N, Baumes JM, Arunkumar E, Noll BC, Smith BD (2009) Squaraine rotaxanes with boat conformation macrocycles. J Org Chem 74:6462–6468

    Article  CAS  Google Scholar 

  55. Johnson JR, Fu N, Arunkumar E, Leevy WM, Gammon ST, Piwnica-Worms D, Smith BD (2007) Squaraine rotaxanes: superior substitutes for Cy-5 in molecular probes for near-infrared fluorescence cell imaging. Angew Chem Int Ed 46:5528–5531

    Article  CAS  Google Scholar 

  56. Gassensmith JJ, Arunkumar E, Barr L, Baumes JM, DiVittorio KM, Johnson JR, Noll BC, Smith BD (2007) Self-assembly of fluorescent inclusion complexes in competitive media including the interior of living cells. J Am Chem Soc 129:15054–15059

    Article  CAS  Google Scholar 

  57. Jacquemin D, Perpète EA, Laurent AD, Assfeld X, Adamo C (2009) Spectral properties of self-assembled squaraine–tetralactam: a theoretical assessment. Phys Chem Chem Phys 11:1258–1262

    Article  CAS  Google Scholar 

  58. Gassensmith JJ, Barr L, Baumes JM, Paek A, Nguyen A, Smith BD (2008) Synthesis and photophysical investigation of squaraine rotaxanes by “clicked capping”. Org Lett 10:3343–3346

    Article  CAS  Google Scholar 

  59. Fu N, Gassensmith JJ, Smith BD (2009) Effect of stopper size on squaraine rotaxane stability. Supramol Chem 21:118–124

    Article  CAS  Google Scholar 

  60. Patsenker LD, Tatarets A, Povrozin Y, Klochko O, Terpetschnig EA, Kudryavtseva Y, Yermolenko I (2008) WO Patent 2,008,094,637

    Google Scholar 

  61. Xue M, Chen CF (2008) Triptycene-based tetralactam macrocycles: synthesis, structure and complexation with squaraine. Chem Commun 46:6128–6130

    Article  Google Scholar 

  62. Asakawa M, Ashton PR, Ballardini R, Balzani V, Belohradsky M, Gandolfi MT, Kocian O, Prodi L, Raymo FM, Stoddart JF, Venturi M (1997) The slipping approach to self-assembling [n]rotaxanes. J Am Chem Soc 119:302–310

    Article  CAS  Google Scholar 

  63. Hsueh SY, Lai CC, Liu YH, Wang Y, Peng SM, Chiu SH (2007) Protecting a squaraine near-IR dye through its incorporation in a slippage-derived [2]rotaxane. Org Lett 9:4523–4526

    Article  CAS  Google Scholar 

  64. Hsueh SY, Lai CC, Liu YH, Peng SM, Chiu SH (2007) Highly selective Na+-templated formation of [2]pseudorotaxanes exhibiting significant optical outputs. Angew Chem Int Ed 46:2013–2017

    Article  CAS  Google Scholar 

  65. Ashton PR, Baxter I, Fyfe MCT, Raymo FM, Spencer N, Stoddart JF, White AJP, Williams DJ (1998) Rotaxane or pseudorotaxane? That is the question! J Am Chem Soc 120:2297–2307

    Article  CAS  Google Scholar 

  66. Chiu SH, Rowan SJ, Cantrill SJ, Glink PT, Garrell RL, Stoddart JF (2000) A rotaxane-like complex with controlled-release characteristics. Org Lett 2:3631–3634

    Article  CAS  Google Scholar 

  67. Gassensmith JJ, Baumes JM, Smith BD (2009) Discovery and early development of squaraine rotaxanes. Chem Commun 42:6329–6338

    Article  Google Scholar 

  68. Tatarets AL, Fedyunyayeva IA, Dyubko TS, Povrozin YA, Doroshenko AO, Terpetschnig EA, Patsenker LD (2006) Ring-substituted squaraine dyes as probes and labels for fluorescence assays. Anal Chim Acta 570:214–223

    Article  CAS  Google Scholar 

  69. Oswald B, Lehmann F, Simon L, Terpetschnig E, Wolfbeis OS (2000) Red laser-induced fluorescence energy transfer in an immunosystem. Anal Biochem 280:272–277

    Article  CAS  Google Scholar 

  70. Oswald B, Gruber M, Böhmer M, Lehmann F, Probst M, Wolfbeis OS (2001) Novel diode laser-compatible fluorophores and their application to single molecule detection, protein labeling and fluorescence resonance energy transfer immunoassay. Photochem Photobiol 74:237–245

    Article  CAS  Google Scholar 

  71. Köhn F, Hofkens J, Wiesler UM, Cotlet M, Van der Auweraer M, Müllen K, De Schryver FC (2001) Single-molecule spectroscopy of a dendrimer-based host–guest system. Chem Eur J 7:4126–4133

    Article  Google Scholar 

  72. Köhn F, Hofkens J, Gronheid R, Cotlet M, Müllen K, Van der Auweraer M, De Schryver FC (2002) Excitation energy transfer in dendritic host–guest donor–acceptor systems. Chem Phys Chem 3:1005–1013

    Article  Google Scholar 

  73. Stears RL, Getts RC, Gullans SR (2000) A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol Genomics 3:93–99

    CAS  Google Scholar 

  74. Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679

    Article  CAS  Google Scholar 

  75. Comes M, Marcos MD, Martínez-Máňez R, Millán MC, Ros-Lis JV, Sancenón F, Soto J, Villaescusa LA (2006) Anchoring dyes into multidimensional large-pore zeolites: a prospective use as chromogenic sensing materials. Chem Eur J 12:2162–2170

    Article  CAS  Google Scholar 

  76. Zhou X, Zhou J (2004) Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core–shell silica nanoparticles. Anal Chem 76:5302–5312

    Article  CAS  Google Scholar 

  77. Nakamura M, Shono M, Ishimura K (2007) Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles. Anal Chem 79:6507–6514

    Article  CAS  Google Scholar 

  78. Bringley JF, Penner TL, Wang R, Harder JF, Harrison WJ, Buonemani L (2008) Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. J Colloid Interface Sci 320:132–139

    Article  CAS  Google Scholar 

  79. Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654

    Article  Google Scholar 

  80. Axelrod D, Hellen EH, Fulbight RM (1992) Microparticle fluorescence. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 3, Biochemical applications. Plenum, New York, pp 289–343

    Chapter  Google Scholar 

  81. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699

    Article  CAS  Google Scholar 

  82. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal Biochem 315:57–66

    Article  CAS  Google Scholar 

  83. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905

    Article  CAS  Google Scholar 

  84. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  85. Fu Y, Lakowicz JR (2009) Modification of single molecule fluorescence near metallic nanostructures. Laser Photon Rev 3:221–232

    Article  CAS  Google Scholar 

  86. Lakowicz JR, Shen Y, D'Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277

    Article  CAS  Google Scholar 

  87. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  88. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  89. Lukomska J, Malicka J, Gryczynski I, Lakowicz JR (2004) Fluorescence enhancements on silver colloid coated surfaces. J Fluoresc 14:417–423

    Article  CAS  Google Scholar 

  90. Goldys EM, Drozdowicz-Tomsia K, Xie F, Shtoyko T, Matveeva E, Gryczynski I, Gryczynski Z (2007) Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture. J Am Chem Soc 129:12117–12122

    Article  CAS  Google Scholar 

  91. Parfenov A, Gryczynski I, Malicka J (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833

    Article  CAS  Google Scholar 

  92. Shtoyko T, Matveeva EG, Chang IF, Gryczynski Z, Goldys E, Gryczynski I (2008) Enhanced fluorescent immunoassays on silver fractal-like structures. Anal Chem 80:1962–1966

    Article  CAS  Google Scholar 

  93. Barnett A, Matveeva EG, Gryczynski I, Gryczynski Z, Goldys EM (2007) Coupled plasmon effects for the enhancement of fluorescent immunoassays. Phys B Condens Matter 394:297–300

    Article  CAS  Google Scholar 

  94. Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Metal particle-enhanced fluorescent immunoassays on metal mirrors. Anal Biochem 363:239–245

    Article  CAS  Google Scholar 

  95. Sørensen TJ, Laursen BW, Luchowski R, Shtoyko T, Akopova I, Gryczynski Z, Gryczynski I (2009) Enhanced fluorescence emission of Me-ADOTA+ by self-assembled silver nanoparticles on a gold film. Chem Phys Lett 476:46–50

    Article  Google Scholar 

  96. Fedyunyayeva I, Patsenker L, Borovoy I, Terpetschnig E (2007) Photonics of polymethine dyes on silver and gold nanoparticles. 10th Conference on Methods and Applications of Fluorescence (MAF10). Book of Abstracts, p 222

    Google Scholar 

  97. Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8:472–478

    Article  CAS  Google Scholar 

  98. Matveeva EG, Terpetschnig EA, Stevens M, Patsenker L, Kolosova OS, Gryczynski Z, Gryczynski I (2009) Near-infrared squaraine dyes for fluorescence enhanced surface assay. Dyes Pigm 80:41–46

    Article  CAS  Google Scholar 

  99. Luchowski R, Matveeva EG, Shtoyko T, Sarkar P, Patsenker LD, Klochko OP, Terpetschnig EA, Borejdo J, Akopova I, Gryczynski Z, Gryczynski I (2010) Single molecule immunoassay on plasmonic platforms. Curr Pharm Biotechnol 11:96–102

    Article  CAS  Google Scholar 

  100. Liang S, John CL, Xu S et al (2010) Silica-based nanoparticles: design and properties. In:Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:229–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patsenker, L.D., Tatarets, A.L., Klochko, O.P., Terpetschnig, E.A. (2010). Conjugates, Complexes, and Interlocked Systems Based on Squaraines and Cyanines. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_5

Download citation

Publish with us

Policies and ethics