
Chapter 5
More About Block Ciphers

A block cipher is much more than just an encryption algorithm. It can be used as
a versatile building block with which a diverse set of cryptographic mechanisms
can be realized. For instance, we can use them for building different types of block-
based encryption schemes, and we can even use block ciphers for realizing stream
ciphers. The different ways of encryption are called modes of operation and are
discussed in this chapter. Block ciphers can also be used for constructing hash func-
tions, message authentication codes which are also knowns as MACs, or key estab-
lishment protocols, all of which will be described in later chapters. There are also
other uses for block ciphers, e.g., as pseudo-random generators. In addition to modes
of operation, this chapter also discusses two very useful techniques for increasing
the security of block ciphers, namely key whitening and multiple encryption.

In this chapter you will learn

� the most important modes of operation for block ciphers in practice
� security pitfalls when using modes of operations
� the principles of key whitening
� why double encryption is not a good idea, and the meet-in-the-middle attack
� triple encryption

123Christof Paar et al., Understanding Cryptography

© Springer-Verlag Berlin Heidelberg 2010

124 5 More About Block Ciphers

5.1 Encryption with Block Ciphers: Modes of Operation

In the previous chapters we introduced how DES, 3DES and AES encrypt a block
of data. Of course, in practice one wants typically to encrypt more than one single
8-byte or 16-byte block of plaintext, e.g., when encrypting an e-mail or a computer
file. There are several ways of encrypting long plaintexts with a block cipher. We
introduce several popular modes of operation in this chapter, including

� Electronic Code Book mode (ECB),
� Cipher Block Chaining mode (CBC),
� Cipher Feedback mode (CFB),
� Output Feedback mode (OFB),
� Counter mode (CTR).

The latter three modes use the block cipher as a building block for a stream cipher.
All of the five modes have one goal: They encrypt data and thus provide confi-

dentiality for a message sent from Alice to Bob. In practice, we often not only want
to keep data confidential, but Bob also wants to know whether the message is re-
ally coming from Alice. This is called authentication and the Galois Counter mode
(GCM), which we will also introduce, is a mode of operation that lets the receiver
(Bob) determine whether the message was really sent by the person he shares a key
with (Alice). Moreover, authentication also allows Bob to detect whether the cipher-
text was altered during transmission. More on authentication is found in Chap. 10.

The ECB and CFB modes require that the length of the plaintext be an exact
multiple of the block size of the cipher used, e.g., a multiple of 16 bytes in the
case of AES. If the plaintext does not have this length, it must be padded. There
are several ways of doing this padding in practice. One possible padding method
is to append a single “1” bit to the plaintext and then to append as many “0” bits
as necessary to reach a multiple of the block length. Should the plaintext be an
exact multiple of the block length, an extra block consisting only of padding bits is
appended.

5.1.1 Electronic Codebook Mode (ECB)

The Electronic Code Book (ECB) mode is the most straightforward way of encrypt-
ing a message. In the following, let ek(xi) denote the encryption of plaintext block
xi with key k using some arbitrary block cipher. Let e−1

k (yi) denote the decryption
of ciphertext block yi with key k. Let us assume that the block cipher encrypts (de-
crypts) blocks of size b bits. Messages which exceed b bits are partitioned into b-bit
blocks. If the length of the message is not a multiple of b bits, it must be padded to
a multiple of b bits prior to encryption. As shown in Fig. 5.1, in ECB mode each
block is encrypted separately. The block cipher can, for instance, be AES or 3DES.

Encryption and decryption in the ECB mode is formally described as follows:

5.1 Encryption with Block Ciphers: Modes of Operation 125

Fig. 5.1 Encryption and decryption in ECB mode

Definition 5.1.1 Electronic Codebook Mode (ECB)
Let e() be a block cipher of block size b, and let xi and yi be bit
strings of length b.
Encryption: yi = ek(xi), i ≥ 1
Decryption: xi = e−1

k (yi) = e−1
k (ek(xi)), i ≥ 1

It is straightforward to verify the correctness of the ECB mode:

e−1
k (yi) = e−1

k (ek(xi)) = xi.

The ECB mode has advantages. Block synchronization between the encryption
and decryption parties Alice and Bob is not necessary, i.e., if the receiver does not
receive all encrypted blocks due to transmission problems, it is still possible to de-
crypt the received blocks. Similarly, bit errors, e.g., caused by noisy transmission
lines, only affect the corresponding block but not succeeding blocks. Also, block ci-
phers operating in ECB mode can be parallelized, e.g., one encryption unit encrypts
(or decrypts) block 1, the next one block 2, and so on. This is an advantage for
high-speed implementations, but many other modes such as the CFB do not allow
parallelization.

However, as is often the case in cryptography, there are some unexpected weak-
nesses associated with the ECB mode which we will discuss in the following. The
main problem of the ECB mode is that it encrypts highly deterministically. This
means that identical plaintext blocks result in identical ciphertext blocks, as long as
the key does not change. The ECB mode can be viewed as a gigantic code book —
hence the mode’s name — which maps every input to a certain output. Of course, if
the key is changed the entire code book changes, but as long as the key is static the
book is fixed. This has several undesirable consequences. First, an attacker recog-
nizes if the same message has been sent twice simply by looking at the ciphertext.
Deducing information from the ciphertext in this way is called traffic analysis. For
instance, if there is a fixed header that always precedes a message, the header always
results in the same ciphertext. From this, an attacker can, for instance, learn when
a new message has been sent. Second, plaintext blocks are encrypted independently
of previous blocks. If an attacker reorders the ciphertext blocks, this might result in
valid plaintext and the reordering might not be detected. We demonstrate two simple
attacks which exploit these weaknesses of the ECB mode.

The ECB mode is susceptible to substitution attacks, because once a particular
plaintext to ciphertext block mapping xi → yi is known, a sequence of ciphertext

126 5 More About Block Ciphers

blocks can easily be manipulated. We demonstrate how a substitution attack could
work in the real world. Imagine the following example of an electronic wire transfer
betweens banks.

Example 5.1. Substitution attack against electronic bank transfer
Let’s assume a protocol for wire transfers between banks (Fig. 5.2). There are five
fields which specify a transfer: the sending bank’s ID and account number, the re-
ceiving bank’s ID and account number, and the amount. We assume now (and this
is a major simplification) that each of the fields has exactly the size of the block
cipher width, e.g., 16 bytes in the case of AES. Furthermore, the encryption key be-
tween the two banks does not change too frequently. Due to the nature of the ECB,
an attacker can exploit the deterministic nature of this mode of operation by simple
substitution of the blocks. The attack details are as follows:

4 51 2 3Block #

Amount
$

Receiving
Account #

Receiving
Bank B

Sending
Account #

Sending
Bank A

Fig. 5.2 Example for a substitution attack against ECB encryption

1. The attacker, Oscar, opens one account at bank A and one at bank B.
2. Oscar taps the encrypted line of the banking communication network.
3. He sends $1.00 transfers from his account at bank A to his account at bank B

repeatedly. He observes the ciphertexts going through the communication net-
work. Even though he cannot decipher the random-looking ciphertext blocks, he
can check for ciphertext blocks that repeat. After a while he can recognize the
five blocks of his own transfer. He now stores blocks 1, 3 and 4 of these transfers.
These are the encrypted versions of the ID numbers of both banks as well as the
encrypted version of his account at bank B.

4. Recall that the two banks do not change the key too frequently. This means that
the same key is used for several other transfers between bank A and B. By com-
paring blocks 1 and 3 of all subsequent messages with the ones he has stored,
Oscar recognizes all transfers that are made from some account at bank A to
some account at bank B. He now simply replaces block 4 — which contains the
receiving account number — with the block 4 that he stored before. This block
contains Oscar’s account number in encrypted form. As a consequence, all trans-
fers from some account of bank A to some account of bank B are redirected to
go into Oscar’s B account! Note that bank B now has means of detecting that the
block 4 has been replaced in some of the transfers it receives.

5. Withdraw money from bank B quickly and fly to a country that has a relaxed
attitude about the extradition of white-collar criminals.
�
What’s interesting about this attack is that it works completely without attack-

ing the block cipher itself. So even if we would use AES with a 256-bit key and if

5.1 Encryption with Block Ciphers: Modes of Operation 127

we would encrypt each block, say, 1000 times, this would not prevent the attack. It
should be stressed, however, that this is not an attack that breaks the block cipher
itself. Messages that are unknown to Oscar still remain confidential. He simply re-
placed parts of the ciphertext with some other (previous) ciphertexts. This is called
a violation of the integrity of the message. There are available techniques for pre-
serving the integrity of a message, namely message authentication codes (MACs)
and digital signatures. Both are widely used in practice to prevent such an attack,
and are introduced in Chaps. 10 and 12. Also, the Galois Counter mode, which is
described below, is an encryption mode with a built-in integrity check. Note that this
attack only works if the key between bank A and B is not changed too frequently.
This is another reason why frequent key freshness is a good idea.

We now look at another problem posed by the ECB mode.

Example 5.2. Encryption of bitmaps in ECB mode
Figure 5.3 clearly shows a major disadvantage of the ECB mode: Identical plaintexts
are mapped to identical ciphertexts. In case of a simple bitmap, the information (text
in the picture) can still be read out from the encrypted picture even though we used
AES with a 256-bit key for encryption. This is because the background consists of
only a few different plaintext blocks which yields a fairly uniformly looking back-
ground in the ciphertext. On the other hand, all plaintext blocks which contain part
of the letters result in random-looking ciphertexts. These random-looking cipher-
texts are clearly distinguishable from the uniform background by the human eye.

Fig. 5.3 Image and encrypted image using AES with 256-bit key in ECB mode

�

128 5 More About Block Ciphers

This weakness is similar to the attack of the substitution cipher that was intro-
duced in the first example. In both cases, statistical properties in the plaintext are
preserved in the ciphertext. Note that unlike an attack against the substitution cipher
or the above banking transfer attack, an attacker does not have to do anything in the
case here. The human eye automatically makes use of the statistical information.

Both attacks above were examples of the weakness of a deterministic encryption
scheme. Thus, it is usually preferable that different ciphertexts are produced every
time we encrypt the same plaintext. This behavior is called probabilistic encryp-
tion. This can be achieved by introducing some form of randomness, typically in
form of an initialization vector (IV). The following modes of operation all encrypt
probabilistically by means of an IV.

5.1.2 Cipher Block Chaining Mode (CBC)

There are two main ideas behind the Cipher Block Chaining (CBC) mode. First, the
encryption of all blocks are “chained together” such that ciphertext yi depends not
only on block xi but on all previous plaintext blocks as well. Second, the encryption
is randomized by using an initialization vector (IV). Here are the details of the CBC
mode.

The ciphertext yi, which is the result of the encryption of plaintext block xi, is
fed back to the cipher input and XORed with the succeeding plaintext block xi+1.
This XOR sum is then encrypted, yielding the next ciphertext yi+1, which can then
be used for encrypting xi+2, and so on. This process is shown on the left-hand side
of Fig. 5.4. For the first plaintext block x1 there is no previous ciphertext. For this an
IV is added to the first plaintext, which also allows us to make each CBC encryption
nondeterministic. Note that the first ciphertext y1 depends on plaintext x1 (and the
IV). The second ciphertext depends on the IV, x1 and x2. The third ciphertext y3

depends on the IV and x1,x2,x3, and so on. The last ciphertext is a function of all
plaintext blocks and the IV.

Fig. 5.4 Encryption and decryption in CBC mode

When decrypting a ciphertext block yi in CBC mode, we have to reverse the two
operations we have done on the encryption side. First, we have to reverse the block
cipher encryption by applying the decryption function e−1(). After this we have to

5.1 Encryption with Block Ciphers: Modes of Operation 129

undo the XOR operation by again XORing the correct ciphertext block. This can
be expressed for general blocks yi as e−1

k (yi) = xi ⊕ yi−1. The right-hand side of
Fig. 5.4 shows this process. Again, if the first ciphertext block y1 is decrypted, the
result must be XORed with the initialization vector IV to determine the plaintext
block x1, i.e., x1 = IV ⊕ e−1

k (y1). The entire process of encryption and decryption
can be described as:

Definition 5.1.2 Cipher block chaining mode (CBC)
Let e() be a block cipher of block size b; let xi and yi be bit strings
of length b; and IV be a nonce of length b.
Encryption (first block): y1 = ek(x1 ⊕ IV)
Encryption (general block): yi = ek(xi ⊕ yi−1), i ≥ 2
Decryption (first block): x1 = e−1

k (y1)⊕ IV
Decryption (general block): xi = e−1

k (yi)⊕ yi−1, i ≥ 2

We now verify the mode, i.e., we show that the decryption actually reverses the
encryption. For the decryption of the first block y1, we obtain:

d(y1) = e−1
k (y1)⊕ IV = e−1

k (ek(x1 ⊕ IV))⊕ IV = (x1 ⊕ IV)⊕ IV = x1

For the decryption of all subsequent blocks yi, i ≥ 2, we obtain:

d(yi) = e−1
k (yi)⊕ yi−1 = e−1

k (ek(xi ⊕ yi−1))⊕ yi−1 = (xi ⊕ yi−1)⊕ yi−1 = xi

If we choose a new IV every time we encrypt, the CBC mode becomes a prob-
abilistic encryption scheme. If we encrypt a string of blocks x1, . . . ,xt once with a
first IV and a second time with a different IV, the two resulting ciphertext sequences
look completely unrelated to each other for an attacker. Note that we do not have
to keep the IV secret. However, in most cases, we want the IV to be a nonce, i.e., a
number used only once. There are many different ways of generating and agreeing
on initialization values. In the simplest case, a randomly chosen number is trans-
mitted in the clear between the two communication parties prior to the encrypted
session. Alternatively it is a counter value that is known to Alice and Bob, and it is
incremented every time a new session starts (which requires that the counter value
must be stored between sessions). It could be derived from values such as Alice’s
and Bob’s ID number, e.g., their IP addresses, together with the current time. Also,
in order to strengthen any of these methods, we can take a value as described above
and ECB-encrypt it once using the block cipher with the key known to Alice and
Bob, and use the resulting ciphertext as the IV. There are some advanced attacks
which also require that the IV is nonpredictable.

It is instructive to discuss whether the substitution attack against the bank trans-
fer that worked for the ECB mode is applicable to the CBC mode. If the IV is
properly chosen for every wire transfer, the attack will not work at all since Os-
car will not recognize any patterns in the ciphertext. If the IV is kept the same for
several transfers, he would recognize the transfers from his account at bank A to

130 5 More About Block Ciphers

his account at bank B. However, if he substitutes ciphertext block 4, which is his
encrypted account number, in other wire transfers going from bank A to B, bank
B would decrypt block 4 and 5 to some random value. Even though money would
not be redirected into Oscar’s account, it might be redirected to some other random
account. The amount would be a random value too. This is obviously also highly
undesirable for banks. This example shows that even though Oscar cannot perform
specific manipulations, ciphertext alterations by him can cause random changes to
the plaintext, which can have major negative consequences. Hence in many, if not in
most, real-world systems, encryption itself is not sufficient: we also have to protect
the integrity of the message. This can be achieved by message authentication codes
(MACs) or digital signatures, which are introduced in Chap. 12. The Galois Counter
mode described below provides encryption and integrity check simultaneously.

5.1.3 Output Feedback Mode (OFB)

In the Output Feedback (OFB) mode a block cipher is used to build a stream cipher
encryption scheme. This scheme is shown in Fig. 5.5. Note that in OFB mode the
key stream is not generated bitwise but instead in a blockwise fashion. The output
of the cipher gives us b key stream bits, where b is the width of the block cipher
used, with which we can encrypt b plaintext bits using the XOR operation.

The idea behind the OFB mode is quite simple. We start with encrypting an IV
with a block cipher. The cipher output gives us the first set of b key stream bits.
The next block of key stream bits is computed by feeding the previous cipher output
back into the block cipher and encrypting it. This process is repeated as shown in
Fig. 5.5.

The OFB mode forms a synchronous stream cipher (cf. Fig. 2.3) as the key stream
does not depend on the plain or ciphertext. In fact, using the OFB mode is quite sim-
ilar to using a standard stream cipher such as RC4 or Trivium. Since the OFB mode
forms a stream cipher, encryption and decryption are exactly the same operation.
As can be seen in the right-hand part of Fig. 5.5, the receiver does not use the block
cipher in decryption mode e−1() to decrypt the ciphertext. This is because the actual
encryption is performed by the XOR function, and in order to reverse it, i.e., to de-
crypt it, we simply have to perform another XOR function on the receiver side. This
is in contrast to ECB and CBC mode, where the data is actually being encrypted and
decrypted by the block cipher.

Encryption and decryption using the OFB scheme is as follows:

5.1 Encryption with Block Ciphers: Modes of Operation 131

Fig. 5.5 Encryption and decryption in OFB mode

Definition 5.1.3 Output feedback mode (OFB)
Let e() be a block cipher of block size b; let xi, yi and si be bit
strings of length b; and IV be a nonce of length b.
Encryption (first block): s1 = ek(IV) and y1 = s1 ⊕ x1

Encryption (general block): si = ek(si−1) and yi = si ⊕ xi, i ≥ 2
Decryption (first block): s1 = ek(IV) and x1 = s1 ⊕ y1

Decryption (general block): si = ek(si−1) and xi = si ⊕ yi, i ≥ 2

As a result of the use of an IV, the OFB encryption is also nondeterministic,
hence, encrypting the same plaintext twice results in different ciphertexts. As in the
case for the CBC mode, the IV should be a nonce. One advantage of the OFB mode
is that the block cipher computations are independent of the plaintext. Hence, one
can precompute one or several blocks si of key stream material.

5.1.4 Cipher Feedback Mode (CFB)

The Cipher Feedback (CFB) mode also uses a block cipher as a building block for a
stream cipher. It is similar to the OFB mode but instead of feeding back the output
of the block cipher, the ciphertext is fed back. (Hence, a somewhat more accurate
term for this mode would have been “Ciphertext Feedback mode”.) As in the OFB
mode, the key stream is not generated bitwise but instead in a blockwise fashion.
The idea behind the CFB mode is as follows: To generate the first key stream block
s1, we encrypt an IV. For all subsequent key stream blocks s2,s3, . . ., we encrypt the
previous ciphertext. This scheme is shown in Fig. 5.6.

Since the CFB mode forms a stream cipher, encryption and decryption are exactly
the same operation. The CFB mode is an example of an asynchronous stream cipher
(cf. Fig. 2.3) since the stream cipher output is also a function of the ciphertext.

The formal description of the CFB mode follows:

132 5 More About Block Ciphers

Fig. 5.6 Encryption and decryption in CFB mode

Definition 5.1.4 Cipher feedback mode (CFB)
Let e() be a block cipher of block size b; let xi and yi be bit strings
of length b; and IV be a nonce of length b.
Encryption (first block): y1 = ek(IV)⊕ x1

Encryption (general block): yi = ek(yi−1)⊕ xi, i ≥ 2
Decryption (first block): x1 = ek(IV)⊕ y1

Decryption (general block): xi = ek(yi−1)⊕ yi, i ≥ 2

As a result of the use of an IV, the CFB encryption is also nondeterministic,
hence, encrypting the same plaintext twice results in different ciphertexts. As in the
case for the CBC and OFB modes, the IV should be a nonce.

A variant of the CFB mode can be used in situations where short plaintext blocks
are to be encrypted. Let’s use the encryption of the link between a (remote) key-
board and a computer as an example. The plaintexts generated by the keyboard are
typically only 1 byte long, e.g., an ASCII character. In this case, only 8 bits of the
key stream are used for encryption (it does not matter which ones we choose as they
are all secure), and the ciphertext also only consists of 1 byte. The feedback of the
ciphertext as input to the block cipher is a bit tricky. The previous block cipher input
is shifted by 8 bit positions to the left, and the 8 least significant positions of the in-
put register are filled with the ciphertext byte. This process repeats. Of course, this
approach works not only for plaintext blocks of length 8, but for any lengths shorter
than the cipher output.

5.1.5 Counter Mode (CTR)

Another mode which uses a block cipher as a stream cipher is the Counter (CTR)
mode. As in the OFB and CFB modes, the key stream is computed in a blockwise
fashion. The input to the block cipher is a counter which assumes a different value
every time the block cipher computes a new key stream block. Figure 5.7 shows the
principle.

We have to be careful how to initialize the input to the block cipher. We must
prevent using the same input value twice. Otherwise, if an attacker knows one of

5.1 Encryption with Block Ciphers: Modes of Operation 133

Fig. 5.7 Encryption and decryption in counter mode

the two plaintexts that were encrypted with the same input, he can compute the key
stream block and thus immediately decrypt the other ciphertext. In order to achieve
this uniqueness, often the following approach is taken in practice. Let’s assume a
block cipher with an input width of 128 bits, such as an AES. First we choose
an IV that is a nonce with a length smaller than the block length, e.g., 96 bits.
The remaining 32 bits are then used by a counter with the value CT R which is
initialized to zero. For every block that is encrypted during the session, the counter
is incremented but the IV stays the same. In this example, the number of blocks we
can encrypt without choosing a new IV is 232. Since every block consists of 8 bytes,
a maximum of 8×232 = 235 bytes, or about 32 Gigabytes, can be encrypted before
a new IV must be generated. Here is a formal description of the Counter mode with
a cipher input construction as just introduced:

Definition 5.1.5 Counter mode (CTR)
Let e() be a block cipher of block size b, and let xi and yi be bit
strings of length b. The concatenation of the initialization value IV
and the counter CT Ri is denoted by (IV ||CT Ri) and is a bit string
of length b.
Encryption: yi = ek(IV ||CT Ri)⊕ xi, i ≥ 1
Decryption: xi = ek(IV ||CT Ri)⊕ yi, i ≥ 1

Please note that the string (IV ||CT R1) does not have to be kept secret. It can, for
instance, be generated by Alice and sent to Bob together with the first ciphertext
block. The counter CT R can either be a regular integer counter or a slightly more
complex function such as a maximum-length LFSR.

One might wonder why so many modes are needed. One attractive feature of the
Counter mode is that it can be parallelized because, unlike the OFB or CFB mode, it
does not require any feedback. For instance, we can have two block cipher engines
running in parallel, where the first block cipher encrypts the counter value CT R1 and
the other CT R2 at the same time. When the two block cipher engines are finished,
the first engine encrypts the value CT R3 and the other one CT R4, and so on. This
scheme would allow us to encrypt at twice the data rate of a single implementation.
Of course, we can have more than two block ciphers running in parallel, increasing
the speed-up proportionally. For applications with high throughput demands, e.g.,

134 5 More About Block Ciphers

in networks with data rates in the range of Gigabits per second, encryption modes
that can be parallelized are very desirable.

5.1.6 Galois Counter Mode (GCM)

The Galois Counter Mode (GCM) is an encryption mode which also computes a
message authentication code (MAC) [160]. A MAC provides a cryptographic check-
sum that is computed by the sender, Alice, and appended to the message. Bob also
computes a MAC from the message and checks whether his MAC is the same as
the one computed by Alice. This way, Bob can make sure that (1) the message was
really created by Alice and (2) that nobody tampered with the ciphertext during
transmission. These two properties are called message authentication and integrity,
respectively. Much more about MACs is found in Chap. 12. We presented a slightly
simplified version of the GCM mode in the following.

GCM protects the confidentiality of the plaintext x by using an encryption in
counter mode. Additionally, GCM protects not only the authenticity of the plaintext
x but also the authenticity of a string AAD called additional authenticated data.
This authenticated data is, in contrast to the plaintext, left in clear in this mode of
operation. In practice, the string AAD might include addresses and parameters in a
network protocol.

The GCM consists of an underlying block cipher and a Galois field multiplier
with which the two GCM functions authenticated encryption and authenticated de-
cryption are realized. The cipher needs to have a block size of 128 bits such as AES.
On the sender side, GCM encrypts data using the Counter Mode (CTR) followed by
the computation of a MAC value. For encryption, first an initial counter is derived
from an IV and a serial number. Then the initial counter value is incremented, and
this value is encrypted and XORed with the first plaintext block. For subsequent
plaintexts, the counter is incremented and then encrypted. Note that the underlying
block cipher is only used in encryption mode. GCM allows for precomputation of
the block cipher function if the initialization vector is known ahead of time.

For authentication, GCM performs a chained Galois field multiplication. For ev-
ery plaintext xi an intermediate authentication parameter gi is derived. gi is com-
puted as the XOR sum of the current ciphertext yi and gi, and multiplied by the
constant H. The value H is a hash subkey which is generated by encryption of the
all-zero input with the block cipher. All multiplications are in the 128-bit Galois
field GF(2128) with the irreducible polynomial P(x) = x128 + x7 + x2 + x+1. Since
only one multiplication is required per block cipher encryption, the GCM mode adds
very little computational overhead to the encryption.

5.1 Encryption with Block Ciphers: Modes of Operation 135

Definition 5.1.6 Basic Galois Counter mode (GCM)
Let e() be a block cipher of block size 128 bit; let x be the plaintext
consisting of the blocks x1, . . . ,xn; and let AAD be the additional
authenticated data.

1. Encryption

a. Derive a counter value CT R0 from the IV and compute
CT R1 = CT R0 +1.

b. Compute ciphertext: yi = ek(CT Ri)⊕ xi, i ≥ 1

2. Authentication

a. Generate authentication subkey H = ek(0)
b. Compute g0 = AAD×H (Galois field multiplication)
c. Compute gi = (gi−1 ⊕ yi)×H, 1 ≤ i ≤ n (Galois field

multiplication)
d. Final authentication tag: T = (gn ×H)⊕ ek(CT R0)

Figure 5.8 shows a diagram of the GCM.

Fig. 5.8 Basic authenticated encryption in Galois Counter mode

The receiver of the packet [(y1, . . . ,yn),T,ADD] decrypts the ciphertext by also
applying the Counter mode. To check the authenticity of the data, the receiver also
computes an authentication tag T ′ using the received ciphertext and ADD as input.
He employs exactly the same steps as the sender. If T and T ′ match, the receiver is

136 5 More About Block Ciphers

assured that the cipertext (and ADD) were not manipulated in transit and that only
the sender could have generated the message.

5.2 Exhaustive Key Search Revisited

In Sect. 3.5.1 we saw that given a plaintext–ciphertext pair (x1,y1) a DES key can
be exhaustively searched using the simple algorithm:

DESki(x1)
?
= y1, i = 0,1, . . . ,256 −1. (5.1)

For most other block ciphers, however, a key search is somewhat more complicated.
Somewhat surprisingly, a brute-force attack can produce false positive results, i.e.,
keys ki are found that are not the one used for the encryption, yet they perform a
correct encryption in Eq. (5.1). The likelihood of this occurring is related to the
relative size of the key space and the plaintext space.

A brute-force attack is still possible, but several pairs of plaintext–ciphertext are
needed. The length of the respective plaintext required to break the cipher with a
brute-force attack is referred to as unicity distance. After trying every possible key,
there should be just one plaintext that makes sense.

Let’s first look why one pair (x1,y1) might not be sufficient to identify the correct
key. For illustration purposes we assume a cipher with a block width of 64 bit and a
key size of 80 bit. If we encrypt x1 under all possible 280 keys, we obtain 280 cipher-
texts. However, there exist only 264 different ones, and thus some keys must map x1

to the same ciphertext. If we run through all keys for a given plaintext–ciphertext
pair, we find on average 280/264 = 216 keys that perform the mapping ek(x1) = y1.
This estimation is valid since the encryption of a plaintext for a given key can be
viewed as a random selection of a 64-bit ciphertext string. The phenomenon of mul-
tiple “paths” between a given plaintext and ciphertext is depicted in Fig. 5.9, in
which k(i) denote the keys that map x1 to y1. These keys can be considered key
candidates.

Fig. 5.9 Multiple keys map between one plaintext and one ciphertext

5.3 Increasing the Security of Block Ciphers 137

Among the approximately 216 key candidates k(i) is the correct one that was used
by to perform the encryption. Let’s call this one the target key. In order to identify
the target key we need a second plaintext–ciphertext pair (x2,y2). Again, there are
about 216 key candidates that map x2 to y2. One of them is the target key. The other
keys can be viewed as randomly drawn from the 280 possible ones. It is crucial to
note that the target key must be present in both sets of key candidates. To determine
the effectiveness of a brute-force attack, the crucial question is now: What is the
likelihood that another (false!) key is contained in both sets? The answer is given by
the following theorem:

Theorem 5.2.1 Given a block cipher with a key length of κ bits
and block size of n bits, as well as t plaintext–ciphertext pairs
(x1,y1), . . . ,(xt ,yt), the expected number of false keys which en-
crypt all plaintexts to the corresponding ciphertexts is:

2κ−tn

Returning to our example and assuming two plaintext–ciphertext pairs, the likeli-
hood of a false key k f that performs both encryptions ek f (x1) = y1 and ek f (x2) = y2

is:
280−2·64 = 2−48

This value is so small that for almost all practical purposes it is sufficient to test two
plaintext–ciphertext pairs. If the attacker chooses to test three pairs, the likelihood
of a false key decreases to 280−3·64 = 2−112. As we saw from this example, the like-
lihood of a false alarm decreases rapidly with the number t of plaintext–ciphertext
pairs. In practice, typically we only need a few pairs.

The theorem above is not only important if we consider an individual block ci-
pher but also if we perform multiple encryptions with a cipher. This issue is ad-
dressed in the following section.

5.3 Increasing the Security of Block Ciphers

In some situations we wish to increase the security of block ciphers, e.g., if a ci-
pher such as DES is available in hardware or software for legacy reasons in a given
application. We discuss two general approaches to strengthen a cipher, multiple en-
cryption and key whitening. Multiple encryption, i.e., encrypting a plaintext more
than once, is already a fundamental design principle of block ciphers, since the
round function is applied many times to the cipher. Our intuition tells us that the
security of a block cipher against both brute-force and analytical attacks increases
by performing multiple encryptions in a row. Even though this is true in principle,
there are a few surprising facts. For instance, doing double encryption does very
little to increase the brute-force resistance over a single encryption. We study this

138 5 More About Block Ciphers

counterintuitive fact in the next section. Another very simple yet effective approach
to increase the brute-force resistance of block ciphers is called key whitening; it is
also discussed below.

We note here that when using AES, we already have three different security levels
given by the key lengths of 128, 192 and 256 bits. Given that there are no realistic
attacks known against AES with any of those key lengths, there appears no reason
to perform multiple encryption with AES for practical systems. However, for some
selected older ciphers, especially for DES, multiple encryption can be a useful tool.

5.3.1 Double Encryption and Meet-in-the-Middle Attack

Let’s assume a block cipher with a key length of κ bits. For double encryption, a
plaintext x is first encrypted with a key kL, and the resulting ciphertext is encrypted
again using a second key kR. This scheme is shown in Fig. 5.10.

Fig. 5.10 Double encryption and meet-in-the-middle attack

A naı̈ve brute-force attack would require us to search through all possible com-
binations of both keys, i.e., the effective key lengths would be 2κ and an exhaustive
key search would require 2κ ·2κ = 22κ encryptions (or decryptions). However, using
the meet-in-the-middle attack, the key space is drastically reduced. This is a divide-
and-conquer attack in which Oscar first brute-force-attacks the encryption on the
left-hand side, which requires 2κ cipher operations, and then the right encryption,
which again requires 2κ operations. If he succeeds with this attack, the total com-
plexity is 2κ +2κ = 2 ·2κ = 2κ+1. This is barely more complex than a key search of
a single encryption and of course is much less complex than performing 22κ search
operations.

The attack has two phases. In the first one, the left encryption is brute-forced and
a lookup table is computed. In the second phase the attacker tries to find a match in
the table which reveals both encryption keys. Here are the details of this approach.

5.3 Increasing the Security of Block Ciphers 139

Phase I: Table Computation For a given plaintext x1, compute a lookup table for
all pairs (kL,i,zL,i), where ekL,i(x1) = zL,i and i = 1,2, . . . ,2κ . These computations
are symbolized by the left arrow in the figure. The zL,i are the intermediate values
that occur in between the two encryptions. This list should be ordered by the values
of the zL,i. The number of entries in the table is 2κ , with each entry being n+κ bits
wide. Note that one of the keys we used for encryption must be the correct target
key, but we still do not know which one it is.

Phase II: Key Matching In order to find the key, we now decrypt y1, i.e., we
perform the computations symbolized by the right arrow in the figure. We select the
first possible key kR,1, e.g., the all-zero key, and compute:

e−1
kR,1

(x1) = zR,1.

We now check whether zR,1 is equal to any of the zL,i values in the table which we
computed in the first phase. If it is not in the table, we increment the key to kR,1,
decrypt y1 again, and check whether this value is in the table. We continue until we
have a match.

We now have what is called a collision of two values, i.e., zL,i = zR, j. This gives
us two keys: The value zL,i is associated with the key kL,i from the left encryption,
and kR, j is the key we just tested from the right encryption. This means there exists
a key pair (kL,i,kR, j) which performs the double encryption:

ekR, j(ekL,i(x1)) = y1 (5.2)

As discussed in Sect. 5.2, there is a chance that this is not the target key pair we
are looking for since there are most likely several possible key pairs that perform
the mapping x1 → y1. Hence, we have to verify additional key candidates by en-
crypting several plaintext–ciphertext pairs according to Eq. (5.2). If the verification
fails for any of the pairs (x1,y1),(x2,y2), . . ., we go back to beginning of Phase II
and increment the key kR again and continue with the search.

Let’s briefly discuss how many plaintext–ciphertext pairs we will need to rule
out faulty keys with a high likelihood. With respect to multiple mappings between a
plaintext and a ciphertext as depicted in Fig. 5.9, double encryption can be modeled
as a cipher with 2κ key bits and n block bits. In practice, one often has 2κ > n,
in which case we need several plaintext–ciphertext pairs. The theorem in Sect. 5.2
can easily be adopted to the case of multiple encryption, which gives us a useful
guideline about how many (x,y) pairs should be available:

Theorem 5.3.1 Given are l subsequent encryptions with a block
cipher with a key length of κ bits and block size of n bits, as well as
t plaintext–ciphertext pairs (x1,y1), . . . ,(xt ,yt). The expected num-
ber of false keys which encrypt all plaintexts to the corresponding
ciphertexts is given by:

2lκ−tn

140 5 More About Block Ciphers

Let’s look at an example.

Example 5.3. As an example, if we double-encrypt with DES and choose to test
three plaintext–ciphertext pairs, the likelihood of a faulty key pair surviving all three
key tests is:

22·56−3·64 = 2−80.

�
Let us examine the computational complexity of the meet-in-the-middle attack.

In the first phase of the attack, corresponding to the left arrow in the figure, we per-
form 2κ encryptions and store them in 2κ memory locations. In the second stage,
corresponding to the right arrow in the figure, we perform a maximum of 2κ decryp-
tions and table look-ups. We ignore multiple key tests at this stage. The total cost
for the meet-in-the-middle attack is:

number of encryptions and decryptions = 2κ +2κ = 2κ+1

number of storage locations = 2κ

This compares to 2κ encryptions or decryptions and essentially no storage cost in
the case of a brute-force attack against a single encryption. Even though the storage
requirements go up quite a bit, the costs in computation and memory are still only
proportional to 2κ . Thus, it is widely believed that double encryption is not worth
the effort. Instead, triple encryption should be used; this method is described in the
following section.

Note that for a more exact complexity analysis of the meet-in-the-middle attack,
we would also need take the cost of sorting the table entries in Phase I into account
as well as the table look-ups in Phase II. For our purposes, however, we can ignore
these additional costs.

5.3.2 Triple Encryption

Compared to double encryption, a much more secure approach is the encryption of
a block of data three times in a row:

y = ek3(ek2(ek1(x))).

In practice, often a variant of the triple encryption from above is used:

y = ek1(e
−1
k2

(ek3(x))).

This type of triple encryption is sometimes referred to as encryption–decryption–
encryption (EDE). The reason for this has nothing to do with security. If k1 = k2,
the operation effectively performed is

y = ek3(x),

5.3 Increasing the Security of Block Ciphers 141

which is single encryption. Since it is sometimes desirable that one implementation
can perform both triple encryption and single encryption, i.e., in order to interoper-
ate with legacy systems, EDE is a popular choice for triple encryption. Moreover,
for a 112-bit security, it is sufficient to choose two different keys k1 and k2 and set
k3 = k1 in case of 3DES.

Of course, we can still perform a meet-in-the-middle attack as shown in Fig. 5.11.

Fig. 5.11 Triple encryption and sketch of a meet-in-the-middle attack

Again, we assume κ bits per key. The problem for an attacker is that she has to
compute a lookup table either after the first or after the second encryption. In both
cases, the attacker has to compute two encryptions or decryptions in a row in order
to reach the lookup table. Here lies the cryptographic strength of triple encryption:
There are 22k possibilities to run through all possible keys of two encryptions or
decryptions. In the case of 3DES, this forces an attacker to perform 2112 key tests,
which is entirely infeasible with current technology. In summary, the meet-in-the-
middle attack reduces the effective key length of triple encryption from 3κ to 2κ .
Because of this, it is often said that the effective key length of triple DES is 112 bits
as opposed to 3 ·56 = 168 bits which are actually used as input to the cipher.

5.3.3 Key Whitening

Using an extremely simple technique called key whitening, it is possible to make
block ciphers such as DES much more resistant against brute-force attacks. The
basic scheme is shown in Fig. 5.12.

In addition to the regular cipher key k, two whitening keys k1 and k2 are used to
XOR-mask the plaintext and ciphertext. This process can be expressed as:

142 5 More About Block Ciphers

Fig. 5.12 Key whitening of a block cipher

Definition 5.3.1 Key whitening for block ciphers
Encryption: y = ek,k1,k2(x) = ek(x⊕ k1)⊕ k2

Decryption: x = e−1
k,k1,k2

(x) = e−1
k (y⊕ k2)⊕ k1

It is important to stress that key whitening does not strengthen block ciphers
against most analytical attacks such as linear and differential cryptanalysis. This
is in contrast to multiple encryption, which often also increases the resistance to
analytical attacks. Hence, key whitening is not a “cure” for inherently weak ciphers.
Its main application is ciphers that are relatively strong against analytical attacks
but possess too short a key space. The prime example of such a cipher is DES. A
variant of DES which uses key whitening is DESX. In the case of DESX, the key k2

is derived from k and k1. Please note that most modern block ciphers such as AES
already apply key whitening internally by adding a subkey prior to the first round
and after the last round.

Let’s now discuss the security of key whitening. A naı̈ve brute-force attack
against the scheme requires 2κ+2n search steps, where κ is the bit length of the key
and n the block size. Using the meet-in-the-middle attack introduced in Sect. 5.3,
the computational load can be reduced to approximately 2κ+n steps, plus storage
of 2n data sets. However, if the adversary Oscar can collect 2m plaintext–ciphertext
pairs, a more advanced attack exists with a computational complexity of

2κ+n−m

cipher operations. Even though we do not introduce the attack here, we’ll briefly
discuss its consequences if we apply key whitening to DES. We assume that the at-
tacker knows 2m plaintext–ciphertext pairs. Note that the designer of a security sys-
tem can often control how many plaintext–ciphertext are generated before a new key
is established. Thus, the parameter m cannot be arbitrarily increased by the attacker.
Also, since the number of known plaintexts grows exponentially with m, values be-
yond, say, m = 40, seem quite unrealistic. As a practical example, let’s assume key
whitening of DES, and that Oscar can collect a maximum of 232 plaintexts. He now
has to perform

256+64−32 = 288

5.4 Discussion and Further Reading 143

DES computations. Given that with today’s technology even 256 DES operations re-
quire several days with special hardware, performing 288 encryptions is completely
out of reach. Note that the number of plaintexts (which Oscar is not supposed to
know in most circumstances) corresponds to 32 GByte of data, the collection of
which is also a formidable task in most real-world situations.

A particular attractive feature of key whitening is that the additional computa-
tional load is negligible. A typical block cipher implementation in software requires
several hundred instructions for encrypting one input block. In contrast, a 64-bit
XOR operation only takes 2 instructions on a 32-bit machine, so that the perfor-
mance impact due to key whitening is in the range of 1% or less in most cases.

5.4 Discussion and Further Reading

Modes of Operation After the AES selection process, the US National Institute of
Standards and Technology (NIST) supported the process of evaluating new modes of
operations in a series of special publications and workshops [124]. Currently, there
are eight approved block cipher modes: five for confidentiality (ECB, CBC, CFB,
OFB, CTR), one for authentication (CMAC) and two combined modes for confi-
dentiality and authentication (CCM, GCM). The modes are widely used in practice
and are part of many standards, e.g., for computer networks or banking.

Other Applications for Block Ciphers The most important application of block
ciphers in practice, in addition to data encryption, is Message Authentication Codes
(MACs), which are discussed in Chap. 12. The schemes CBC-MAC, OMAC and
PMAC are constructed with a block cipher. Authenticated Encryption (AE) uses
block ciphers to both encrypt and generate a MAC in order to provide confidentiality
and authentication, respectively. In addition to the GCM introduced in this chapter,
other AE modes include the EAX mode, OCB mode, and GC mode.

Another application is the Cryptographically Secure Pseudo Random Number
Generators (CSPRNG) built from block ciphers. In fact, the stream cipher modes
introduced in this chapter, OFB, CFB and CTR mode, form CSPRNGs. There are
also standards such as [4, Appendix A.2.4] which explicitly specify random number
generators from block ciphers.

Block ciphers can also be used to build cryptographic hash functions, as dis-
cussed in Chap. 11.

Extending Brute-Force Attacks Even though there are no algorithmic shortcuts
to brute-force attacks, there are methods which are efficient if several exhaustive key
searches have to be performed. Those methods are called time–memory tradeoff at-
tacks (TMTO). The general idea is to encrypt a fixed plaintext under a large number
of keys and to store certain intermediate results. This is the precomputation phase,
which is typically at least as complex as a single brute-force attack and which results
in large lookup tables. In the online phase, a search through the tables takes place
which is considerably faster than a brute-force attack. Thus, after the precomputa-

144 5 More About Block Ciphers

tion phase, individual keys can be found much more quickly. TMTO attacks were
originally proposed by Hellman [91] and were improved with the introduction of
distinguished points by Rivest [145]. More recently rainbow tables were proposed
to further improve TMTO attacks [131]. A limiting factor of TMTO attacks in prac-
tice is that for each individual attack it is required that the same piece of known
plaintext was encrypted, e.g., a file header.

Block Ciphers and Quantum Computers With the potential rise of quantum
computers in the future, the security of currently used crypto algorithms has to be
reevaluated. (It should be noted that the possible existence of quantum computers in
a few decades from now is hotly debated.) Whereas all popular existing asymmetric
algorithms such as RSA are vulnerable to attacks using quantum computers [153],
symmetric algorithms are much more resilient. A potential quantum computer us-
ing Grover’s algorithm [87] would require only 2(n/2) steps in order to perform a
complete key search on a cipher with a keyspace of 2n elements. Hence, key lengths
of more than 128 bit are required if resistance against quantum computer attacks
is desired. This observation was also the motivation for requiring the 192-bit and
256-bit key lengths for AES. Interestingly, it can be shown that there can be no
quantum algorithm which performs such an attack more efficiently than Grover’s
algorithm [16].

5.5 Lessons Learned

� There are many different ways to encrypt with a block cipher. Each mode of
operation has some advantages and disadvantages.

� Several modes turn a block cipher into a stream cipher.
� There are modes that perform encryption together together with authentication,

i.e., a cryptographic checksum protects against message manipulation.
� The straightforward ECB mode has security weaknesses, independent of the un-

derlying block cipher.
� The counter mode allows parallelization of encryption and is thus suited for high-

speed implementations.
� Double encryption with a given block cipher only marginally improves the resis-

tance against brute-force attacks.
� Triple encryption with a given block cipher roughly doubles the key length.

Triple DES (3DES) has an effective key length of 112 bits.
� Key whitening enlarges the DES key length without much computational over-

head.

5.5 Problems 145

Problems

5.1. Consider the storage of data in encrypted form in a large database using AES.
One record has a size of 16 bytes. Assume that the records are not related to one
another. Which mode would be best suited and why?

5.2. We consider known-plaintext attacks on block ciphers by means of an exhaus-
tive key search where the key is k bits long. The block length counts n bits with
n > k.

1. How many plaintexts and ciphertexts are needed to successfully break a block
cipher running in ECB mode? How many steps are done in the worst case?

2. Assume that the initialization vector IV for running the considered block cipher
in CBC mode is known. How many plaintexts and ciphertexts are now needed to
break the cipher by performing an exhaustive key search? How many steps need
now maximally be done? Briefly describe the attack.

3. How many plaintexts and ciphertexts are necessary, if you do not know the IV?
4. Is breaking a block cipher in CBC mode by means of an exhaustive key search

considerably more difficult than breaking an ECB mode block cipher?

5.3. In a company, all files which are sent on the network are automatically en-
crypted by using AES-128 in CBC mode. A fixed key is used, and the IV is changed
once per day. The network encryption is file-based, so that the IV is used at the
beginning of every file.

You managed to spy out the fixed AES-128 key, but do not know the recent IV.
Today, you were able to eavesdrop two different files, one with unidentified content
and one which is known to be an automatically generated temporary file and only
contains the value 0xFF. Briefly describe how it is possible to obtain the unknown
initialization vector and how you are able to determine the content of the unknown
file.

5.4. Keeping the IV secret in OFB mode does not make an exhaustive key search
more complex. Describe how we can perform a brute-force attack with unknown IV.
What are the requirements regarding plaintext and ciphertext?

5.5. Describe how the OFB mode can be attacked if the IV is not different for each
execution of the encryption operation.

5.6. Propose an OFB mode scheme which encrypts one byte of plaintext at a time,
e.g., for encrypting key strokes from a remote keyboard. The block cipher used is
AES. Perform one block cipher operation for every new plaintext byte. Draw a block
diagram of your scheme and pay particular attention to the bit lengths used in your
diagram (cf. the descripton of a byte mode at the end of Sect. 5.1.4).

5.7. As is so often true in cryptography, it is easy to weaken a seemingly strong
scheme by small modifications. Assume a variant of the OFB mode by which we
only feed back the 8 most significant bits of the cipher output. We use AES and fill
the remaining 120 input bits to the cipher with 0s.

146 5 More About Block Ciphers

1. Draw a block diagram of the scheme.
2. Why is this scheme weak if we encrypt moderately large blocks of plaintext, say

100 kByte? What is the maximum number of known plaintexts an attacker needs
to completely break the scheme?

3. Let the feedback byte be denoted by FB. Does the scheme become cryptograph-
ically stronger if we feedback the 128-bit value FB,FB, . . . ,FB to the input (i.e.,
we copy the feedback byte 16 times and use it as AES input)?

5.8. In the text, a variant of the CFB mode is proposed which encrypts individual
bytes. Draw a block diagram for this mode when using AES as block cipher. Indicate
the width (in bit) of each line in your diagram.

5.9. We are using AES in counter mode for encrypting a hard disk with 1 TB of
capacity. What is the maximum length of the IV?

5.10. Sometimes error propagation is an issue when choosing a mode of operation
in practice. In order to analyze the propagation of errors, let us assume a bit error
(i.e., a substitution of a “0” bit by a “1” bit or vice versa) in a ciphertext block yi.

1. Assume an error occurs during the transmission in one block of ciphertext, let’s
say yi. Which cleartext blocks are affected on Bob’s side when using the ECB
mode?

2. Again, assume block yi contains an error introduced during transmission. Which
cleartext blocks are affected on Bob’s side when using the CBC mode?

3. Suppose there is an error in the cleartext xi on Alice’s side. Which cleartext
blocks are affected on Bob’s side when using the CBC mode?

4. Assume a single bit error occurs in the transmission of a ciphertext character in
8-bit CFB mode. How far does the error propagate? Describe exactly how each
block is affected.

5. Prepare an overview of the effect of bit errors in a ciphertext block for the modes
ECB, CBC, CFB, OFB and CTR. Differentiate between random bit errors and
specific bit errors when decrypting yi.

5.11. Besides simple bit errors, the deletion or insertion of a bit yields even more
severe effects since the synchronization of blocks is disrupted. In most cases, the
decryption of subsequent blocks will be incorrect. A special case is the CFB mode
with a feedback width of 1 bit. Show that the synchronization is automatically re-
stored after κ +1 steps, where κ is the block size of the block cipher.

5.12. We now analyze the security of DES double encryption (2DES) by doing a
cost-estimate:

2DES(x) = DESK2(DESK1(x))

1. First, let us assume a pure key search without any memory usage. For this pur-
pose, the whole key space spanned by K1 and K2 has to be searched. How much
does a key-search machine for breaking 2DES (worst case) in 1 week cost?
In this case, assume ASICs which can perform 107 keys per second at a cost of
$5 per IC. Furthermore, assume an overhead of 50% for building the key search
machine.

5.5 Problems 147

2. Let us now consider the meet-in-the-middle (or time-memory tradeoff) attack, in
which we can use memory. Answer the following questions:

� How many entries have to be stored?
� How many bytes (not bits!) have to be stored for each entry?
� How costly is a key search in one week? Please note that the key space has to

be searched before filling up the memory completely. Then we can begin to
search the key space of the second key. Assume the same hardware for both
key spaces.

For a rough cost estimate, assume the following costs for hard disk space:
$8/10 GByte, where 1 GByte = 109 Byte.

3. Assuming Moore’s Law, when do the costs move below $1 million?

5.13. Imagine that aliens — rather than abducting earthlings and performing strange
experiments on them — drop a computer on planet Earth that is particularly suited
for AES key searches. In fact, it is so powerful that we can search through 128, 192
and 256 key bits in a matter of days. Provide guidelines for the number of plaintext–
ciphertext pairs the aliens need so that they can rule out false keys with a reasonable
likelihood. (Remark: Since the existence of both aliens and human-built computers
for such key lengths seem extremely unlikely at the time of writing, this problem is
pure science fiction.)

5.14. Given multiple plaintext–ciphertext pairs, your objective is to attack an en-
cryption scheme based upon multiple encryptions.

1. You want to break an encryption system E, which makes use of triple AES-192
encryption (e.g. block length n = 128 bit, key size of k = 192 bit). How many
tuples (xi,yi) with yi = eK(xi) do you need to level down the probability of finding
a key K, which matches the condition yi = eK(xi) for one particular i, but fails
for most other values of i (a so called false positive), to Pr(K′ �= K) = 2−20?

2. What is the maximum key size of a block cipher that you could still effectively
attack with an error probability of at most Pr(K′ �= K) = 2−10 = 1/1024, if this
cipher always uses double encryption (l = 2) and has a block length of n = 80
bit?

3. Estimate the success probability, if you are provided with four plaintext–ciphertext
blocks which are double encrypted using AES-256 (n = 128 bits, k = 256 bits).
Please justify your results.

Note that this is a purely theoretical problem. Key spaces of size 2128 and beyond
can not be brute-forced.

5.15. 3DES with three different keys can be broken with about 22k encryptions
and 2k memory cells, k = 56. Design the corresponding attack. How many pairs
(x,y) should be available so that the probability to determine an incorrect key triple
(k1,k2,k3) is sufficiently low?

148 5 More About Block Ciphers

5.16. This is your chance to break a cryptosystem. As we know by now, cryptogra-
phy is a tricky business. The following problem illustrates how easy it is to turn a
strong scheme into a weak one with minor modifications.

We saw in this chapter that key whitening is a good technique for strengthening
block ciphers against brute-force attacks. We now look at the following variant of
key whitening against DES, which we’ll call DESA:

DESAk,k1(x) = DESk(x)⊕ k1.

Even though the method looks similar to key whitening, it hardly adds to the se-
curity. Your task is to show that breaking the scheme is roughly as difficult as a
brute-force attack against single DES. Assume you have a few pairs of plaintext–
ciphertext.

	Chapter 5 More About Block Ciphers
	5.1 Encryption with Block Ciphers: Modes of Operation
	5.1.1 Electronic Codebook Mode (ECB)
	5.1.2 Cipher Block Chaining Mode (CBC)
	5.1.3 Output Feedback Mode (OFB)
	5.1.4 Cipher Feedback Mode (CFB)
	5.1.5 Counter Mode (CTR)
	5.1.6 Galois Counter Mode (GCM)

	5.2 Exhaustive Key Search Revisited
	5.3 Increasing the Security of Block Ciphers
	5.3.1 Double Encryption and Meet-in-the-Middle Attack
	5.3.2 Triple Encryption
	5.3.3 Key Whitening

	5.4 Discussion and Further Reading
	5.5 Lessons Learned
	Problems

