Skip to main content

Fatty Acid Amide Hydrolase and the Metabolism of N-Acylethanolamine Lipid Mediators in Plants

  • Chapter
  • First Online:
  • 1211 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 16))

Abstract

N-Acylethanolamines (NAEs) are a group of fatty acid derivatives that have been identified in a wide range of multicellular eukaryotes, some unicellular eukaryotes, and in a limited number of prokaryotes. The precise acyl composition of the NAE pool in organisms is variable and the overall levels of NAEs fluctuate with changes in development or in response to cellular stresses, especially where it has been studied in animal and plant systems. In animals, these lipids belong to the endocannabinoid pathway where they regulate diverse behavioral and physiological processes. In plant systems, these NAEs have potent growth-regulating activities, which are terminated by their hydrolysis. The inactivation of NAEs, in part, is accomplished by an enzyme identified as a functional homolog of the fatty acid amide hydrolase (FAAH) that regulates endocannabinoid metabolism in vertebrates. Here, the molecular and biochemical characteristics of this enzyme and its role in NAE metabolism in plants are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Blancaflor EB, Chapman KD (2006) Similarities between endocannabinoid signaling in animal systems and N-acylethanolamine metabolism in plants. In: Communication in plants: neuronal aspects of plant life. Springer, Berlin, pp 205–219

    Google Scholar 

  • Blancaflor EB, Hou G, Chapman KD (2003) Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta 217:206–217

    CAS  PubMed  Google Scholar 

  • Bracey MH, Hanson MA, Masuda KR, Stevens RC, Cravatt BF (2002) Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298:1793–1796

    Article  CAS  PubMed  Google Scholar 

  • Campos-Cuevas JC, Pelagio-Flores R, Raya-González J, Méndez-Bravo A, Ortiz-Castro R, López-Bucio J (2008) Tissue culture of Arabidopsis thaliana explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation. Plant Sci 174:165

    Article  CAS  Google Scholar 

  • Chapman KD (2004) Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Prog Lipid Res 43:302–327

    Article  CAS  PubMed  Google Scholar 

  • Chapman KD, Venables B, Markovic R, Blair RW Jr, Bettinger C (1999) N-Acylethanolamines in seeds. Quantification of molecular species and their degradation upon imbibition. Plant Physiol 120:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Cravatt BF, Lichtman AH (2003) Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 7:469–475

    Article  CAS  PubMed  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  CAS  PubMed  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    Article  CAS  PubMed  Google Scholar 

  • Han L, Gao JR, Li ZM, Zhang Y, Guo WM (2007) Synthesis of new plant growth regulator: N-(fatty acid) O-aryloxyacetyl ethanolamine. Bioorg Med Chem Lett 17:3231–3234

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Wang Y-S, Uppalapati SR, Wang K, Tang Y, Vadapalli V, Venables BJ, Chapman KD, Blancaflor EB, Mysore KS (2008) Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant J 56:336–349

    Article  CAS  PubMed  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  CAS  PubMed  Google Scholar 

  • Kilaru A, Blancaflor EB, Venables B, Tripathy S, Mysore K, Chapman KD (2007) The N-Acylethanolamine-mediated regulatory pathway in plants. Chem Biodivers 4(8):1933–1955

    Google Scholar 

  • Kurahashi Y, Ueda N, Suzuki H, Suzuki M, Yamamoto S (1997) Reversible hydrolysis and synthesis of anandamide demonstrated by recombinant rat fatty-acid amide hydrolase. Biochem Biophys Res Commun 237:512–515

    Article  CAS  PubMed  Google Scholar 

  • Labar G, Michaux C (2007) Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 4:1882–1902

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Acevedo-Hernandez G, Ramirez-Chavez E, Molina-Torres J, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 9:523–529

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Millan-Godinez M, Mendez-Bravo A, Morquecho-Contreras A, Ramirez-Chavez E, Molina-Torres J, Perez-Torres A, Higuchi M, Kakimoto T, Herrera-Estrella L (2007) Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol 145:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua N-H (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    Article  CAS  PubMed  Google Scholar 

  • Merkel O, Schmid PC, Paltauf F, Schmid HH (2005) Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1734:215–219

    CAS  PubMed  Google Scholar 

  • Motes CM, Pechter P, Yoo CM, Wang YS, Chapman KD, Blancaflor EB (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226:109–123

    Article  CAS  PubMed  Google Scholar 

  • Neu D, Lehmann T, Elleuche S, Pollmann S (2007) Arabidopsis amidase 1, a member of the amidase signature family. FEBS J 274:3440–3451

    Article  CAS  PubMed  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949

    Article  CAS  PubMed  Google Scholar 

  • Oddi S, Bari M, Battista N, Barsacchi D, Cozzani I, Maccarrone M (2005) Confocal microscopy and biochemical analysis reveal spatial and functional separation between anandamide uptake and hydrolysis in human keratinocytes. Cell Mol Life Sci 62:386–395

    Article  CAS  PubMed  Google Scholar 

  • O'Malley RC, Alonso JM, Kim CJ, Leisse TJ, Ecker JR (2007) An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc 2:2910–2917

    Article  PubMed  Google Scholar 

  • Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, Weiler EW (2006) Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta 224:1241–1253

    Article  CAS  PubMed  Google Scholar 

  • Schmid HH, Schmid PC, Natarajan V (1996) The N-acylation-phosphodiesterase pathway and cell signalling. Chem Phys Lipids 80:133–142

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Noordermeer MA, van der Stelt M, Veldink GA, Chapman KD (2002) N-acylethanolamines are metabolized by lipoxygenase and amidohydrolase in competing pathways during cottonseed imbibition. Plant Physiol 130:391–401

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Dixon RA, Chapman KD (2003) Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 278:34990–34997

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Kim SC, Dyer JM, Dixon RA, Chapman KD (2006) Plant fatty acid (ethanol) amide hydrolases. Biochim Biophys Acta 1761:324–334

    CAS  PubMed  Google Scholar 

  • Sun YX, Tsuboi K, Zhao LY, Okamoto Y, Lambert DM, Ueda N (2005) Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages. Biochim Biophys Acta 1736:211–220

    CAS  PubMed  Google Scholar 

  • Teaster ND, Motes CM, Tang Y, Wiant WC, Cotter MQ, Wang YS, Kilaru A, Venables BJ, Hasenstein KH, Gonzalez G, Blancaflor EB, Chapman KD (2007) N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 19:2454–2469

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280:11082–11092

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi K, Zhao LY, Okamoto Y, Araki N, Ueno M, Sakamoto H, Ueda N (2007) Predominant expression of lysosomal N-acylethanolamine-hydrolyzing acid amidase in macrophages revealed by immunochemical studies. Biochim Biophys Acta 1771:623–632

    CAS  PubMed  Google Scholar 

  • Venables BJ, Waggoner CA, Chapman KD (2005) N-acylethanolamines in seeds of selected legumes. Phytochemistry 66:1913–1918

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Shrestha R, Kilaru A, Wiant W, Venables BJ, Chapman KD, Blancaflor EB (2006) Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proc Natl Acad Sci U S A 103:12197–12202

    Article  CAS  PubMed  Google Scholar 

  • Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281:36569–36578

    Article  CAS  PubMed  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Guo WM, Chen SM, Han L, Li ZM (2007) The role of N-lauroylethanolamine in the regulation of senescence of cut carnations (Dianthus caryophyllus). J Plant Physiol 164:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories on N-acylethanolamine metabolism has been supported by grants from the USDA-NRI competitive grants program and the U.S. Department of Energy, Energy Biosciences Program. We thank Dr. Charlene Case-Richardson for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent D. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapman, K.D., Blancaflor, E.B. (2010). Fatty Acid Amide Hydrolase and the Metabolism of N-Acylethanolamine Lipid Mediators in Plants. In: Munnik, T. (eds) Lipid Signaling in Plants. Plant Cell Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03873-0_19

Download citation

Publish with us

Policies and ethics