Skip to main content

Recent Developments in the Jahn–Teller Effect Theory

The Hidden Jahn–Teller Effect

  • Chapter
  • First Online:
Book cover The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

Abstract

In a review paper an updated formulation of the Jahn–Teller (JT) effect (JTE) (including proper JT, pseudo JT, and Renner–Teller (RT) effects) is given ased on the latest achievements in this field, including the conclusion that the JTE is the only source of instability and distortion of any polyatomic system from its high-symmetry configuration. Together with the statement in particle physics that “symmetry breaking is always associated with a degeneracy” the extended formulation of the JTE leads us to the speculation that Nature tends to avoid degeneracies. In the updated formulation the presence of two or more electronic states, degenerate or within a limited energy gap, that mix strongly enough under nuclear displacements is the necessary and sufficient condition of instability. Distinguished from the usually considered electron-vibrational (electron–phonon) interaction in which one electronic state interacts with totally symmetric vibrations, the JTE, mixing two or more electronic states, involves also low-symmetry displacements.

It is shown that if in the global minimum of the adiabatic potential energy surface (APES) the polyatomic system is distorted from its high-symmetry configuration, while the electronic term in the latter is neither degenerate nor pseudo degenerate, and hence there is no apparent JTE or pseudo-JTE (PJTE), the distortion is due to these effects in the higher excited states. This is possible when the JT stabilization energy is larger than the energy gap to the ground state. Since the JT origin of the distortion is not seen explicitly from the calculation of the ground state, we call it hidden JTE (HJTE). There are two kinds of HJTE: (1) induced by proper JTE in an excited state, and (2) produced by the PJTE which mixes two exited states. Both types of HJTE are confirmed by ab initio calculations of a variety of molecular systems. While the first type of HJTE is more “accidental” (ozone, O3, is shown to be a nice example), the second type occurs in e2 and t3 electron configurations and it is accompanied by orbital disproportionation, making the spin state in the global minimum different from that of the high-symmetry configuration. This in turn results in two minima of the APES with relatively close energies, but different electronic states and spin, and a spin crossover between the two minima. With the PJTE and HJTE included, the role of excited states in the analysis of structure and properties of molecular systems in the ground state becomes most important. It can be said that no full treatment of polyatomic systems is possible without involving excited states, even when the properties in the ground state are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.B. Bersuker, The Jahn Teller Effect, (Cambridge University Press, Cambridge, UK, 2006)

    Google Scholar 

  2. H.A. Jahn E. Teller, Proc. Roy. Soc. Lond. A 161, 220 (1937)

    Article  CAS  Google Scholar 

  3. E. Teller, in The Jahn-Teller Effect in Molecules and Crystals, ed. by R. Englman (Wiley, London, 1972), Foreword

    Google Scholar 

  4. U. Öpik M.H.L. Pryce, Proc. R. Soc. Lond. A 238, 425 (1957)

    Article  Google Scholar 

  5. I.B. Bersuker, Nouv. J. Chim. 4, 139 (1980); Teor. Eksp. Khim. 16, 291 (1980)

    Google Scholar 

  6. I.B. Bersuker, Pure Appl. Chem. 60, 1167 (1988); Fiz. Tverdogo Tela 30, 1738 (1988)

    Google Scholar 

  7. I.B. Bersuker, N.N. Gorinchoi, V.Z. Polinger, Teor. Chim. Acta 66, 161 (1984)

    Article  CAS  Google Scholar 

  8. I.B. Bersuker, in Fundamental World of Quantum Chemistry, vol. 3, ed. by E.J. Brandas, E.S. Kryachko (Kluwer, Dordrecht, 2004), p. 257

    Google Scholar 

  9. I.B. Bersuker, Adv. Quant. Chem. 44, 1 (2003)

    Article  CAS  Google Scholar 

  10. S. Weinberg, Quantum theory of Fields, (Cambridge University Press, Cambridge, 1995), Ch. 11

    Google Scholar 

  11. P. Garcia-Fernandez, I.B. Bersuker, J.E. Boggs, Phys. Rev. Lett. 96, 163005 (2006)

    Article  Google Scholar 

  12. D. Babikov, B.K. Kendrick, R.B. Walker, R.T. Pack, P. Fleurat-Lesard, R. Schinke, J. Chem. Phys. 118, 6298 (2003)

    Article  CAS  Google Scholar 

  13. R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererová, S.C. Farantos, J. Chem. Phys. 116, 9749 (2002)

    Article  CAS  Google Scholar 

  14. R. Schinke, P. Fleurat-Lessard, J. Chem. Phys. 121, 5789 (2004)

    Article  CAS  Google Scholar 

  15. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, (Van Nostrand, Toronto, 1966)

    Google Scholar 

  16. P. Garcia-Fernandez, I.B. Bersuker, J.E. Boggs, J. Chem. Phys. 125, 104102 (2006)

    Article  CAS  Google Scholar 

  17. A. Ceulemans, Chem. Phys. 66, 169 (1982)

    Article  CAS  Google Scholar 

  18. A. Ceulemans, D. Beyens, L.G. Vanquickenborne, J. Am. Chem. Soc. 104, 2988 (1982)

    Article  CAS  Google Scholar 

  19. A. Ceulemans, Top. Curr. Chem. 171, 27 (1994)

    CAS  Google Scholar 

  20. R. Meiswinkel, H. Koppel, Chem. Phys. 144, 117 (1990)

    Article  CAS  Google Scholar 

  21. J.S. Li, R.J. van Zee, W. Weltner Jr., K. Raghavachari, Chem. Phys. Lett. 243, 275 (1995)

    Article  CAS  Google Scholar 

  22. J. Fulara, P. Freivogel, M. Grutter, J.P. Maier, J. Phys. Chem. 100, 18042 (1996)

    Article  CAS  Google Scholar 

  23. W. Zwanziger, E.R. Grant, J. Chem. Phys. 87, 2954 (1987)

    Article  CAS  Google Scholar 

  24. H. Koizumi, I.B. Bersuker, Phys. Rev. Lett. 83, 3009 (1999)

    Article  CAS  Google Scholar 

  25. L.F. Chibotaru, A. Ceulemans, Phys. Rev. B 53, 15522 (1996)

    Article  CAS  Google Scholar 

  26. A. Ceulemans, L.F. Chibotaru, F. Cimpoesu, Phys. Rev. Lett. 78, 3725 (1997)

    Article  CAS  Google Scholar 

  27. H.A. Goodwin, Coord. Chem. Rev. 18, 293 (1976)

    Article  CAS  Google Scholar 

  28. A. Hauser, Top. Curr. Chem. 234, 155 (2004)

    CAS  Google Scholar 

  29. E.K. Barefield, D.B. Busch, S.M. Nelson, Q. Rev. Chem. Soc. 22, 457 (1968)

    Article  CAS  Google Scholar 

  30. O. Kahn, C.J. Martinez, Science 279 5347, (1998)

    Article  Google Scholar 

  31. M. Lüders, A. Bordosi, N. Manini, A. Dal Corso, M. Fabrizio, E. Tossatti, Phil. Mag. B 82, 1611 (2002)

    Google Scholar 

  32. N. Manini, A. Dal Corso, M. Fabrizio, E. Tossatti, Phil. Mag. B 81, 793 (2001)

    Article  CAS  Google Scholar 

  33. M. Lüders, N. Manini, P. Gattari, E. Tosatti, Eur. Phys. J. B 35, 57 (2003)

    Article  Google Scholar 

  34. I.B. Bersuker, N.B. Balabanov, D. Pekker, J.E. Boggs, J. Chem. Phys. 117, 10478 (2002)

    Article  CAS  Google Scholar 

  35. B. Bersuker, V.Z. Polinger, N.N. Gorinchoi, J. Struct. Chem. (Theochem) 5, 369 (1992)

    Google Scholar 

  36. P. Garcia-Fernandez, I.B. Bersuker, unpublished

    Google Scholar 

  37. P. Garcia-Fernandez, I.B. Bersuker, J.E. Boggs, J. Phys. Chem. A 111, 10409 (2007)

    Article  CAS  Google Scholar 

  38. W. Zou, I.B. Bersuker, J.E. Boggs, J. Chem. Phys. 129, 114107 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bersuker, I.B. (2009). Recent Developments in the Jahn–Teller Effect Theory. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_1

Download citation

Publish with us

Policies and ethics