Skip to main content

A Climatology of UV Radiation, 1979–2000, 65S–65N

  • Chapter
Book cover UV Radiation in Global Climate Change

Abstract

Solar ultraviolet (UV) radiation reaching earth’s surface is of interest because of its role in the induction of various biological and chemical processes, including skin cancer. We present climatological distributions of monthly mean surface-level UV radiation, calculated using the Tropospheric Ultraviolet-Visible (TUV) radiative transfer model with inputs of ozone column amounts and cloud reflectivities (at 380 nm) measured by satellite instruments (Total Ozone Mapping Spectrometers (TOMS), aboard Nimbus-7, Meteor-3, and Earth Probe). The climatology is averaged over the years 1979–2000 for UV-A (315 nm – 400 nm), UV-B (280 nm – 315 nm), and radiation weighted by the action spectra for the induction of erythema (skin-reddening), pre-vitamin D3 synthesis, and non-melanoma carcinogenesis. Coverage is global, excluding the poles.

Comparisons with concurrent ground-based UV radiation measurements archived at the World Ozone and Ultraviolet Data Center show agreement at the 10%–20% level, except at high latitudes where the large surface albedo of snow and ice invalidates the use of satellite-observed reflectivity in estimating cloud cover. The climatology may be useful in epidemiological studies that assess the role of long-term environmental exposure to UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bais A, Kazadzis S, Balis D, Zerefos C, and Blumthaler M (1998) Correcting global solar ultraviolet spectra recorded by a Brewer spectroradiometer for its angular response error, Appl. Optics 37, 6339–6344

    Article  CAS  Google Scholar 

  • CIE (Commission Internationale de l’Eclairage) (1998) Erythema Reference Action Spectrum and Standard Erythema Dose, CIE S 007/E-1998, Vienna

    Google Scholar 

  • CIE (2006) Photocarciongenesis Action Spectrum (Non-Melanoma Skin Cancers), CIE S 019/E:2006, Vienna

    Google Scholar 

  • Eck TF, Bhartia PK, and Kerr JB (1995) Satellite estimation of spectral UVB irradiance using TOMS derived total ozone and UV reflectivity, Geophys. Res. Lett., 22, 611–614

    Article  CAS  Google Scholar 

  • Frederick JE and Lubin D (1988) The budget of biologically active ultraviolet radiation in the Earth-atmosphere system, J. Geophys. Res., 93, 3825–3832

    Article  Google Scholar 

  • Frederick JE and Erlick C (1995) Trends and interannual variations in erythemal sunlight, 1978–1993, Photochem. Photobiol., 62, 476–484

    Article  CAS  Google Scholar 

  • Herman JR, Bhartia PK, Kiemke J, Ahmad Z, and Larko D (1996a) UV-B increases (1979–1992) from decreases in total ozone, Geophys. Res. Lett., 23, 2117–2120

    Article  CAS  Google Scholar 

  • Herman JR, Bhartia PK, Krueger AJ, McPeters RD, Wellemeyer CG, Seftor CJ, Jaross G, Schlesinger BM, Torres O, Labow G, Byerly W, Taylor SL, Swissler T, Cebula RP, and Gu XY (1996b) Meteor-3 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Ref. Pub. 1393, Goddard Space Flight Center, Greenbelt, MD

    Google Scholar 

  • Herman JR, Krotkov N, Calarier E, Larko D, and Labow G (1999) Distribution of UV radiation at the earth’s surface from TOMS-measured UV-backscattered radiances, J. Geophys., Res., 104, 12059–12076

    Article  CAS  Google Scholar 

  • Herman JR, Piacentini RD, Ziemke J, Celarier E, and Larko D (2000) Interannual variability of ozone and UV-B exposure, J. Geophys. Res., 105, 29189–29193

    Article  CAS  Google Scholar 

  • Holick M (Chair), Bouillon R, Eisman J, Garabedian M, Kleinschmidt J, Suda T, Terenetskaya I, and Webb A (2006) Action Spectrum for the Production of Pre-vitamin D3 in Human Skin, CIE Technical Report TC 6–54, Vienna

    Google Scholar 

  • ICNIRP (International Commission on Non-Ionizing Radiation Protection), Global Solar UV-Index, 1995-1

    Google Scholar 

  • Krotkov NA, Bhartia PK, Herman JR, Fioletov V, and Kerr J (1998) Satellite estimation of spectral surface UV in the presence of tropospheric aerosols. 1 Cloud-free case, J. Geophys. Res., 103, 8779–8793

    Article  Google Scholar 

  • Lee-Taylor J, and Madronich S (2007) Climatology of UV-A, UV-B, and Erythemal Radiation at the Earth’s Surface, 1979–2000, NCAR Technical Note TN-474+STR, Boulder, CO

    Google Scholar 

  • Lubin D, Jensen EH, and Gies HP (1998) Global surface ultraviolet radiation climatology from TOMS and ERBE data, J. Geophys. Res., 103, 26061–26091

    Article  Google Scholar 

  • MacLaughlin JA, Anderson RR, and Holick MF (1982) Spectral character of sunlight modulates photosynthesis of pre-vitamin D3 and its photoisomers in human skin. Science 216 (4549): 1001–1003

    Article  CAS  Google Scholar 

  • Madronich S (1992) Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth’s surface, Geophys. Res. Lett., 19, 37–40

    Article  CAS  Google Scholar 

  • Madronich S, and Flocke S (1997) Theoretical estimation of biologically effective UV radiation at the earth’s surface, in Solar Ultraviolet Radiation-Modeling, Measurements and Effects (Zerefos, C., ed.). NATO ASI Series Vol. 152, Springer-Verlag, Berlin

    Google Scholar 

  • Madronich S, McKenzie RE, Björn LO, and Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface, J. Photochem. Photobiol. B:Biology, 46, 5–19

    Article  CAS  Google Scholar 

  • Mayer B and Madronich S (1998) Calculation of ultraviolet radiation quantities using TOMS ozone and ISCCP cloud data, Eos Trans., 79, F170

    Article  Google Scholar 

  • McKenzie RL, Seckmeyer G, Bais A, and Madronich S (2001) Satellite retrievals of erythemal UV dose compared with ground-based measurements at Northern and Southern Latitudes, J. Geophys. Res., 206, 24051–24062

    Article  Google Scholar 

  • McKinlay AF and Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. In: Passchier W.R. and Bosnjakovic, B.F.M. (eds.) Human Exposure to Ultraviolet Radiation: Risks and Regulations. Elsevier, Amsterdam

    Google Scholar 

  • McPeters RD, et al. (1996) Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Reference Publication 1384, National Aeronautics and Space Administration, Washington, D.C.

    Google Scholar 

  • McPeters RD, et al. (1998) Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Tech. Pub. 1998–206895, Goddard Space Flight Center, Greenbelt, MD

    Google Scholar 

  • Micheletti MI, Piacentini RD, and Madronich S (2003) Sensitivity of biologically active UV radiation to stratospheric ozone changes: effects of action spectrum shape, Photochem. Photobio., 78, 456–461

    Article  CAS  Google Scholar 

  • Petropavlovskikh I (1995) Evaluation of photodissociation coefficient calculations for use in atmospheric chemical models, Ph. D. Thesis, U. of Brussels and NCAR/CT-159, Boulder

    Google Scholar 

  • Sabziparvar AA, Shine KP, and Forster PM de F (1999) A model-derived global climatology of ultraviolet radiation at the earth’s surface, Photochem. Photobiol., 69, 193–202

    CAS  Google Scholar 

  • Stamnes K, Tsay S, Wiscombe S, and Jayaweera K (1988) A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502–2509

    Article  CAS  Google Scholar 

  • Thomas NE, Edmiston SN, Alexander A, Millikan RC, Groben P, Hao H, Tolbert D, Berwick M, Busam K, Begg CB, Mattingly D, Ollila DW, Tse CK, Hummer A, Lee-Taylor J, and Conway K (2007) Number of Nevi and Early Life Ambient UV Exposure Are Associated with BRAF-Mutant Melanoma, Cancer Epidemiology Biomarkers and Prevention, 16(5), 991–997

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme), Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2006 Assessment (Leun van der, Bornman JC, J, and X. Tang, eds.) United Nations Environment Programme, Nairobi, 2006

    Google Scholar 

  • USSA (US Standard Atmosphere) (1976) National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), United States Air Force, Washington DC

    Google Scholar 

  • Wenny BN, Schafer JS, DeLuisi JJ, Saxena VK, Barnard WF, Petropavlovskikh IV, and Vergamini AJ (1998) A study of regional aerosol radiative properties and effects on ultraviolet-B radiation, J. Geophys. Res., 103, 17083–17097

    Article  CAS  Google Scholar 

  • WMO (World Meteorological Organization) (1997) Report of the WMO-WHO Meeting of Experts on Standardization of UV Indices and their Dissemination to the Public, WMO/GAW Report No. 127, Geneva

    Google Scholar 

  • WOUDC (World Ozone and UV Data Center) (2002) http://www.woudc.org/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee-Taylor, J., Madronich, S., Fischer, C., Mayer, B. (2010). A Climatology of UV Radiation, 1979–2000, 65S–65N. In: Gao, W., Slusser, J.R., Schmoldt, D.L. (eds) UV Radiation in Global Climate Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03313-1_1

Download citation

Publish with us

Policies and ethics