Skip to main content

Immunity for Closed Sets

  • Conference paper
  • 862 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Abstract

The notion of immune sets is extended to closed sets and \(\Pi^0_1\) classes in particular. We construct a \(\Pi^0_1\) class with no computable member which is not immune. We show that for any computably inseparable sets A and B, the class S(A,B) of separating sets for A and B is immune. We show that every perfect thin \(\Pi^0_1\) class is immune. We define the stronger notion of prompt immunity and construct an example of a \(\Pi^0_1\) class of positive measure which is promptly immune. We show that the immune degrees in the Medvedev lattice of closed sets forms a filter. We show that for any \(\Pi^0_1\) class P with no computable element, there is a \(\Pi^0_1\) class Q which is not immune and has no computable element, and which is Medvedev reducible to P. We show that any random closed set is immune.

This research was partially supported by NSF grants DMS-0554841 and DMS 652372.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambos-Spies, K., Jockusch, C.G., Shore, R.A., Soare, R.I.: An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees. Trans. Amer. Math. Soc. 281, 109–128 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barmpalias, G., Brodhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic randomness of closed sets. J. Logic Comp. 17, 1041–1062 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brodhead, P., Cenzer, D., Dashti, S.: Random closed sets. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 55–64. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Binns, S.: A splitting theorem for the Medvedev and Muchnik lattices. Math. Logic Q. 49, 327–335 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binns, S.: Small \(\Pi^0_1\) classes. Arch. Math. Logic 45, 393–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binns, S.: Hyperimmunity in 2. Notre Dame J. Formal Logic 4, 293–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cenzer, D., Downey, R., Jockusch, C.J.: Countable Thin \(\Pi^0_1\) Classes. Ann. Pure Appl. Logic 59, 79–139 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cenzer, D., Nies, A.: Initial segments of the lattice of \(\Pi^0_1\) classes. Journal of Symbolic Logic 66, 1749–1765 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cholak, P., Coles, R., Downey, R., Hermann, E.: Automorphisms of the Lattice of \(\Pi^0_1\) Classes. Transactions Amer. Math. Soc. 353, 4899–4924 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cenzer, D., Remmel, J.B.: \(\Pi^0_1\) classes in mathematics. In: Ershov, Y., Goncharov, S., Nerode, A., Remmel, J. (eds.) Handbook of Recursive Mathematics, Part Two. Elsevier Studies in Logic, vol. 139, pp. 623–821 (1998)

    Google Scholar 

  11. Cenzer, D., Remmel, J.B.: Effectively Closed Sets. ASL Lecture Notes in Logic (in preparation)

    Google Scholar 

  12. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity (in preparation), http://www.mcs.vuw.ac.nz/~downey/

  13. Jockusch, C.G.: \(\Pi^0_1\) classes and boolean combinations of recursively enumerable sets. J. Symbolic Logic 39, 95–96 (1974)

    Article  MATH  Google Scholar 

  14. Jockusch, C.G., Soare, R.: Degrees of members of \(\Pi^0_1\) classes. Pacific J. Math. 40, 605–616 (1972)

    Article  MATH  Google Scholar 

  15. Jockusch, C.G., Soare, R.: \(\Pi^0_1\) classes and degrees of theories. Trans. Amer. Math. Soc. 173, 35–56 (1972)

    MATH  Google Scholar 

  16. Medvedev, Y.T.: Degrees of difficulty of the mass problem. Dokl. Akad. Nauk SSSR (N.S.) 104, 501–504 (1955) (in Russian)

    MathSciNet  Google Scholar 

  17. Muchnik, A.A.: On strong and weak reducibilities of algorithmic problems. Sibirsk. Mat. Ž. 4, 1328–1341 (1963) (in Russian)

    Google Scholar 

  18. Simpson, S.: Mass problems and randomness. Bull. Symb. Logic 11, 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simpson, S.: \(\Pi^0_1\) classes and models of \(\text{WKL}_0\). In: Simpson, S. (ed.) Reverse Mathematics 2001. Association for Symbolic Logic: Lecture Notes in Logic, vol. 21, pp. 352–378 (2005)

    Google Scholar 

  20. Simpson, S.: An extension of the recursively enumerable Turing degrees. J. London Math. Soc. 75, 287–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cenzer, D., Weber, R., Wu, G. (2009). Immunity for Closed Sets. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics