Skip to main content

Activation of the p53 Tumor Suppressor and its Multiple Roles in Cell Cycle and Apoptosis

  • Chapter
  • First Online:
  • 1932 Accesses

Abstract

p53 is a widely conserved tumor suppressor protein that is frequently inactivated in human cancer. p53 functions primarily as a transcription factor regulating the expression of a growing repertoire of target genes. p53 integrates signals from many stress-activated pathways and is subject to multiple posttranslational modifications. Phosphorylation and acetylation have been implicated in the regulation of p53 stability and activity. In response to DNA damage, hypoxia, oncogene activation and other types of stress, activated p53 triggers a variety of cellular programs, often in a stimuli- and cell type-specific manner. In particular, the role of p53 in cell growth arrest and apoptosis is criticial for its tumor suppressor activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  • Anderson ME, Woelker B, Reed M, Wang P, Tegtmeyer P (1997) Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol Cell Biol 17(11):6255–6264

    CAS  PubMed  Google Scholar 

  • Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M, Okamoto T (2001) Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 276(46):42971–42977

    Article  CAS  PubMed  Google Scholar 

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Shaul Y (2005) p53 Proteasomal degradation: poly-ubiquitination is not the whole story. Cell Cycle 4(8):229–232

    Google Scholar 

  • Bargonetti J, Manfredi JJ (2002) Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14(1):86–91

    Article  CAS  PubMed  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Molecular cell 8(6):1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2001a) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13(6):738–747

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2001b) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490(3):117–122

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5(10):792–804

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Vousden KH (2007) p53: new roles in metabolism. Trends in Cell Biology 17(6):286–291

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274(5286):373–376

    Article  CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4(10):793–805

    Article  CAS  PubMed  Google Scholar 

  • Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP (1997) Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 7(11):860–869

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15(2):164–171

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Molecular cell 21(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT (2005) Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 65(5):1918–1924

    Article  CAS  PubMed  Google Scholar 

  • Charrier-Savournin FB, Chateau MT, Gire V, Sedivy J, Piette J, Dulic V (2004) p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 15(9):3965–3976

    Article  CAS  PubMed  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p53 activity through lysine methylation. Nature 432(7015):353–360

    Article  CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, Ryan KM (2007) DRAM links autophagy to p53 and programmed cell death. Autophagy 3(1):72–74

    CAS  PubMed  Google Scholar 

  • El-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8(5):345–357

    Article  CAS  PubMed  Google Scholar 

  • Espinosa JM (2008) Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27(29):4013–4023

    Article  CAS  PubMed  Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    Article  CAS  PubMed  Google Scholar 

  • Gottifredi V, Prives C (2005) The S phase checkpoint: when the crowd meets at the fork. Semin Cell Dev Biol 16(3):355–368

    Article  CAS  PubMed  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300(5617):342–344

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606

    Article  CAS  PubMed  Google Scholar 

  • Halaby MJ, Yang DQ (2007) p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene 395(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Harris CC (1996) p53 tumor suppressor gene: from the basic research laboratory to the clinic–an abridged historical perspective. Carcinogenesis 17(6):1187–1198

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ (2007) microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819–822

    Article  CAS  PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431

    Article  CAS  PubMed  Google Scholar 

  • Hupp TR, Meek DW, Midgley CA, Lane DP (1992) Regulation of the specific DNA binding function of p53. Cell 71(5):875–886

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. Embo J 20(6):1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Jackson MW, Agarwal MK, Agarwal ML, Agarwal A, Stanhope-Baker P, Williams BR, Stark GR (2004) Limited role of N-terminal phosphoserine residues in the activation of transcription by p53. Oncogene 23(25):4477–4487

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, Wu M, Zhan Q (2002a) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21(57):8696–8704

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H (2002b) MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem 277(34):30838–30843

    Article  CAS  PubMed  Google Scholar 

  • Kaeser MD, Iggo RD (2002) Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Nie L, Wiederschain D, Yuan ZM (2001) Dual role of p300 in the regulation of p53 stability. J Biol Chem 276(49):45928–45932

    Article  CAS  PubMed  Google Scholar 

  • Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Molecular Cell 7(2):283–292

    Article  CAS  PubMed  Google Scholar 

  • Krummel KA, Lee CJ, Toledo F, Wahl GM (2005) The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102(29):10188–10193

    Article  CAS  PubMed  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Marine JC, Jochemsen AG (2004) Mdmx and Mdm2: brothers in arms? Cell Cycle 3(7):900–904

    CAS  PubMed  Google Scholar 

  • McKinney K, Mattia M, Gottifredi V, Prives C (2004) p53 linear diffusion along DNA requires its C terminus. Molecular Cell 16(3):413–424

    Article  CAS  PubMed  Google Scholar 

  • Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1(14):1017–1026

    CAS  PubMed  Google Scholar 

  • Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG (2005) ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4(9):1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT, Lane DP (2000) An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19(19):2312–2323

    Article  CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Petrenko O (2003) The MDM2–p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  • Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, Santocanale C (2004) Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res 64(19):7110–7116

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275(18):13321–13329

    Article  CAS  PubMed  Google Scholar 

  • Murphy ME (2006) Polymorphic variants in the p53 pathway. Cell Death Differ 13(6):916–920

    Article  CAS  PubMed  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13(6):962–972

    Article  CAS  PubMed  Google Scholar 

  • Nghiem P, Park PK, Kim Ys YS, Desai BN, Schreiber SL (2002) ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem 277(6):4428–4434

    Article  CAS  PubMed  Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102(6):849–862

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362(6423):857–860

    Article  CAS  PubMed  Google Scholar 

  • Olsson A, Manzl C, Strasser A, Villunger A (2007) How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14(9):1561–1575

    Article  CAS  PubMed  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10(4):431–442

    Article  CAS  PubMed  Google Scholar 

  • Ou YH, Chung PH, Sun TP, Shieh SY (2005) p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol Biol Cell 16(4):1684–1695

    Article  CAS  PubMed  Google Scholar 

  • Paris R, Henry RE, Stephens SJ, McBryde M, Espinosa JM (2008) Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle 7(15):2427–2433

    CAS  PubMed  Google Scholar 

  • Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M, Biton S, Teunisse AF, Lehmann WD, Jochemsen AG, Shiloh Y (2005) Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA 102(14):5056–5061

    Article  CAS  PubMed  Google Scholar 

  • Piwnica-Worms H (1999) Cell Cycle. Fools rush in. Nature 401(6753):535–537

    Article  CAS  PubMed  Google Scholar 

  • Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7(5):637–651

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT (1999) SUMO-1 modification activates the transcriptional response of p53. Embo J 18(22):6455–6461

    Article  CAS  PubMed  Google Scholar 

  • Sabbatini P, McCormick F (2002) MDMX inhibits the p300/CBP-mediated acetylation of p53. DNA Cell Biol 21(7):519–525

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277(15):12491–12494

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12(18):2831–2841

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Green DR (2005) Transcription, apoptosis and p53: catch-22. Trends Genet 21(3):182–187

    Article  CAS  PubMed  Google Scholar 

  • Selivanova G, Kawasaki T, Ryabchenko L, Wiman KG (1998) Reactivation of mutant p53: a new strategy for cancer therapy. Semin Cancer Biol 8(5):369–378

    Article  CAS  PubMed  Google Scholar 

  • Shaulsky G, Goldfinger N, Tosky MS, Levine AJ, Rotter V (1991) Nuclear localization is essential for the activity of p53 protein. Oncogene 6(11):2055–2065

    CAS  PubMed  Google Scholar 

  • Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555

    Article  CAS  PubMed  Google Scholar 

  • Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18(45):6145–6157

    Article  CAS  PubMed  Google Scholar 

  • Stavridi ES, Chehab NH, Malikzay A, Halazonetis TD (2001) Substitutions that compromise the ionizing radiation-induced association of p53 with 14–3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res 61(19):7030–7033

    CAS  PubMed  Google Scholar 

  • Stewart ZA, Pietenpol JA (2001) p53 Signaling and cell cycle checkpoints. Chem Res Toxicol 14(3):243–263

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26(15):2212–2219

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15):1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Agarwal ML, Agarwal A, Stacey DW, Stark GR (1999) p53 inhibits entry into mitosis when DNA synthesis is blocked. Oncogene 18(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med (Berlin, Germany) 85(11):1175–1186

    CAS  Google Scholar 

  • Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279(51):53015–53022

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Kienitz A, Hofmann I, Muller R, Bastians H (2004) Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23(41):6845–6853

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH (2000) p53: death star. Cell 103(5):691–694

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Prives C (1995) Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376(6535):88–91

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96(7):3706–3711

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Tsay YG, Tan BC, Lo WY, Lee SC (2003) Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem 278(28):25568–25576

    Article  CAS  PubMed  Google Scholar 

  • Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD (1998) ATM-dependent activation of p53 involves dephosphorylation and association with 14–3-3 proteins. Nat Genet 19(2):175–178

    Article  CAS  PubMed  Google Scholar 

  • Webley K, Bond JA, Jones CJ, Blaydes JP, Craig A, Hupp T, Wynford-Thomas D (2000) Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol 20(8):2803–2808

    Article  CAS  PubMed  Google Scholar 

  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118(1):83–97

    Article  CAS  PubMed  Google Scholar 

  • Yang A, McKeon F (2000) P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 1(3):199–207

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Alvarez C, Doll R, Kurata H, Schebye XM, Parry D, Lees E (2004) Intra-S-phase checkpoint activation by direct CDK2 inhibition. Mol Cell Biol 24(14):6268–6277

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Manfredi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giono, L.E., Manfredi, J.J. (2010). Activation of the p53 Tumor Suppressor and its Multiple Roles in Cell Cycle and Apoptosis. In: Sitaramayya, A. (eds) Signal Transduction: Pathways, Mechanisms and Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02112-1_20

Download citation

Publish with us

Policies and ethics