Skip to main content

On the Computation of the Home Posture of the McGill Schönflies-Motion Generator

  • Conference paper

Abstract

The McGill Schönflies-Motion Generator (SMG) is a two-limb parallel robot which is capable of producing three independent translations in the Cartesian space and one rotation about a fixed axis. In this paper, the home posture of the McGill SMG, defined as the configuration at which the robot rests, while it is not in operation, is determined. For this matter, the geometry and the velocity analysis of the McGill SMG is recalled from a previous publication. By making intensive use of both linear-algebra identities and results specific to the kinematics of the Schönflies subgroup, the normality conditions associated with the minimization of the condition number of the forward-kinematics Jacobian of the robot are derived in frame-invariant form. This form lends itself to geometric interpretations that would not be possible with lengthy componentwise expressions if commercial algebraic software packages were used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albala, H. (1982) , ‘Displacement analysis of the n-bar, single-loop, spatial linkage. part I: Underlying mathematics and useful tables, and part II: Basic displacement equations in matrix and algebraic form’, ASME Journal of Mechanical Design 104, 514–525.

    Google Scholar 

  • Alizade, R., Duffy, J. and Hajiyev, E. ( 1983) , ‘Mathematical models for analysis and synthesis of spatial mechanism. part IV: Seven-link spatial mechanisms’, Mechanism and Machine Theory 18(5), 323–338.

    Google Scholar 

  • Alizadeh, D., Angeles, J. and Nokleby, S. ( 2009) , ‘On the home posture of the Mcgill Schönflies motion generator’, Department of Mechanical Engineering and Centre for Intelligent Machines Technical Report (TR-CIM-09-01). McGill University, Montreal, available at <http://www.cim.mcgill.ca/~rmsl/Index/Documents/CIM0901.pdf>.

    Google Scholar 

  • Angeles, J. (2004) , ‘The qualitative synthesis of parallel manipulators’, ASME Journal of Mechanical Design 126, 617–624.

    Google Scholar 

  • Angeles, J. (2007) , Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms, 3rd edn, Springer, New York.

    Google Scholar 

  • Beyer, W. H. (1987) , CRC Handbook of Mathematical Sciences, 6th edn, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Brand, L. (1965) , Advanced Calculus, John Wiley & Sons, New York.

    Google Scholar 

  • Bryson, A. and Ho, Y. (1975) , Applied Optimal Control: Optimization, Estimation and Control, 1st edn, Taylor & Francis, New York.

    Google Scholar 

  • Dietmaier, P. (1998) , ‘The Stewart-Gough platform of general geometry can have 40 real postures’, In Proc. Sixth International Workshop on Advances in Robot Kinematics, Dordrecht.

    Google Scholar 

  • Duffy, J. and Crane, C. (1980) , ‘A displacement analysis of the general spatial 7-link, 7R mechanism’, ASME Journal of Mechanical Design 15(3), 153–169.

    Google Scholar 

  • Gauthier, J., Angeles, J., Nokleby, S. and Morozov, A. (2009) , ‘The kinetostatic conditioning of Schönflies motion generators’, ASME Journal of Mechanism and Robotics 1(1).

    Google Scholar 

  • Hervé, J. and Sparacino, F. ( 1992) , ‘Star, a New Concept in Robotics’, In Proc. 3rd International Workshop on Advances in Robot Kinematics, Ferrara.

    Google Scholar 

  • Husty, M., Pfurner, M. and Schrocker, H. ( 2007) , ‘A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator’, Mechanism and Machine Theory 42(1), 66–81.

    Google Scholar 

  • Lee, H. and Liang, G. (1986) , ‘Displacement analysis of the general spatial seven-link 7R mechanism’, Mechanism and Machine Theory 23(3), 219–226.

    Google Scholar 

  • Li, H. (1990) , Ein Verfahren zur vollständigen Lösung der Rückwärtstransformation für Industrieroboter mit allgemeiner Geometrie, PhD thesis, Universität-Gesamthochschule Duisburg, Duisburg.

    Google Scholar 

  • Luenberger, D. G. (2003) , Linear and Nonlinear Programming, 2nd edn, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Morgan, A. (1987) , Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems, Prentice-Hall, Englewood Cliffs. NJ.

    Google Scholar 

  • Primrose, E. (1986) , ‘On the input-output equation of the general 7R mechanism’, Mechanism and Machine Theory 21(6), 509–510.

    Google Scholar 

  • Raghavan, M. and Roth, B. (1990) , ‘Kinematic analysis of the 6R manipulator of general geometry’, In Proc. of the Fifth International Symposium on Robotics Research, MIT Press, Cambridge MA.

    Google Scholar 

  • Raghavan, M. and Roth, B. (1993) , ‘Inverse kinematics of the general 6R manipulator and related linkages’, ASME Journal of Mechanical Design 115, 502–508.

    Google Scholar 

  • Tsai, L. and Morgan, A. (1985) , ‘Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods’, ASME Journal of Mechanical Design 107, 189–200.

    Google Scholar 

  • Wohlhart, K. (1992) , ‘Displacement analysis of the general spatial parallelogram manipulator’, in ‘In Proc. 3rd International Workshop on Advances in Robot Kinematics’, Ferrara, Italy, pp. 104–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alizadeh, D., Angeles, J., Nokleby, S. (2009). On the Computation of the Home Posture of the McGill Schönflies-Motion Generator. In: Kecskeméthy, A., Müller, A. (eds) Computational Kinematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01947-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01947-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01946-3

  • Online ISBN: 978-3-642-01947-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics