Skip to main content

The Mjølnir Tsunami

  • Chapter
  • First Online:
The Mjølnir Impact Event and its Consequences

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

Propagation characteristics of impact-generated tsunamis are different from most tsunami originating from other sources in that both nonlinearity and dispersion remain important for a long time after generation. This is particularly true for bolides with diameters that are comparable to, or larger than, the ocean depth. Submarine earthquakes and mass gravity flows on the other hand generally produce waves with amplitudes of only a few meters. Such tsunamis are linear during generation as well as propagation, while nonlinear effects become significant only close to the shore. Tsunamis of yet other origins, such as airborne slides, huge rock falls, or exploding/collapsing volcanoes, may locally display features reminiscent to impact tsunamis, but the far-field propagation is again linear. Oceanic impacts of asteroids and comets, however, may produce huge waves in mid ocean that stay strongly nonlinear during propagation over hundreds and thousands of km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artemieva NA, Shuvalov VV (2002) Shock metamorphism on the ocean floor (numerical simulations). Deep Sea Res Part II Top Stud Oceanogr 49(6):959–968

    Article  Google Scholar 

  • Bilham R (2005) A flying start, then a slow slip. Science 308:1126–1127

    Article  Google Scholar 

  • Bremer GMA, Smelror M, Nagy J, Vigran JO (2004) Biotic responses to the Mjølnir meteorite impact, Barents Sea: evidence from a core drilled within the crater. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice, Springer Series in Impact studies. Springer, Berlin-Heidelberg, pp 21–38

    Chapter  Google Scholar 

  • Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous–Tertiary boundary. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, Boulder, pp 55–68

    Chapter  Google Scholar 

  • Clarisse JM, Newman JN, Ursell F (1995) Integrals with a large parameter: water waves on finite depth due to an impulse. Proc R Soc Ser A450:67–87

    Article  Google Scholar 

  • Dypvik H, Sandbakken PT, Postma G, Mørk A (2004c) Early postimpact sedimentation around the central high of the Mjølnir impact crater (Barents Sea, Late Jurassic). Sediment Geol 168:227–247

    Article  Google Scholar 

  • Dypvik H, Wolbach WS, Shuvalov V, Weaver SLW (2008b) Did the Mjølnir asteroid impact ignite Barents Sea hydrocarbon source rocks? In: Evans KR, Horton JW Jr, King DT Jr, Morrow JR (eds) The Sedimentary record of meteorite impacts. Geological Society of America Special Paper 437, Boulder, pp 65–72

    Google Scholar 

  • Gault DE, Sonett CP (1982) Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography and the surface wave radiation field. In: French BM, Schultz PH (eds) Geological implications of impacts of large asteroids and comtes on the Earth. Geol Soc Am Spec Paper 190:69–92

    Google Scholar 

  • Gisler GR, Weaver RP, Mader CL, Gittings ML (2004) Two- and three-dimensional asteroid impact simulations. Comput Sci Eng 6:46–55

    Article  Google Scholar 

  • Glimsdal S, Pedersen GK, Atakan K, Harbitz CB, Langtangen HP, Løvholt, F (2006) Propagation of the December 26, 2004 Indian Ocean Tsunami: effects of dispersion and source characteristics. Int J Fluid Mech Res 33(1):15–43

    Article  Google Scholar 

  • Glimsdal S, Pedersen GK, Langtangen HP, Shuvalov V, Dypvik H (2007) Tsunami generation and propagation from the Mjølnir asteroid impact. Meteorit Planet Sci 42:1473–1493

    Article  Google Scholar 

  • Grue J, Pelinovsky EN, Fructus D, Talipova T, Kharif C (2008) Formation of undular bores and solitary waves in the Strait of Malacca caused by the 26. December 2004 Indian Ocean tsunami. J Geophys Res 113:C05008, doi:10.1029/2007JC004343

    Google Scholar 

  • Kataoka T, Tsutahara M (2004) Transverse instability of surface solitary waves. J Fluid Mech 512:211–221

    Article  Google Scholar 

  • Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modeling of wave transformation, breaking and run-up. Part I 1D J Waterway Port Coast Ocean Eng 126(1):39–47

    Article  Google Scholar 

  • Korycansky DG, Lynett PJ (2005) Offshore breaking of impact tsunami: the Van Dorn effect revisited. Geophys Res Lett 32:L10608

    Article  Google Scholar 

  • Matsui T, Imamura F, Tajika E, Nakano Y, Fujisawa Y (2002) Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. In: Koerbel C, MacLeod KG (eds) Catastrophic events and mass extinctions: Impacts and Beyond. Geological Society of America Special Paper 356, Boulder, pp 69–77

    Chapter  Google Scholar 

  • Mei CC (1989) Applied dynamics of ocean waves. Advanced series on ocean engineering, vol 1, 2nd edn. World Scientific, London, p 768

    Google Scholar 

  • Miles JW (1977) Diffraction of solitary waves. Zeitschrift für angewandte Mathematik und Physik 28:889–902

    Article  Google Scholar 

  • Miles JW (1980) Solitary waves. Ann Rev Fluid Mech 12:11–43

    Article  Google Scholar 

  • Pedersen G (1994) Nonlinear modulations of solitary waves. J Fluid Mech 267:83–108

    Article  Google Scholar 

  • Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25:321–330

    Article  Google Scholar 

  • Peregrine DH (1976) Interaction of water waves and currents. Adv Appl Mech 16:10–117

    Google Scholar 

  • Shuto N (1985) The Nihonkai-Chubu earthquake tsunami on the north Akita Coast. Coast Eng Jpn 28:255–264

    Article  Google Scholar 

  • Shuvalov VV (2003a) Mechanisms of Tsunami generation by impacts [abs] Large Meteorite Impacts 3, Nördlingen, August 2003

    Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Smelror M, Dypvik H (2005) Dinoflagellate cyst and prasinophyte biostratigraphy of the Volgian-Ryazanian boundary strata, western Barents Shelf. Nor Geologiske Undersøkelse Bull 443:61–69

    Google Scholar 

  • Smelror M, Dypvik H, Mørk A (2002) Phytoplankton blooms in the Jurassic Cretaceous boundary beds of the Barents Sea possibly induced by the Mjølnir impact. In Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Lecture notes in Earth Sciences, Impact Studies. Springer, Berlin-Heidelberg, pp 69–81

    Chapter  Google Scholar 

  • Tanaka M (1986) The stability of solitary waves. Phys Fluids 29(3):650–655

    Article  Google Scholar 

  • Ward SN, Asphaug E (2000) Asteroid impact tsunami: A probabilistic hazard assessment. Icarus 145:64–78

    Article  Google Scholar 

  • Ward SN, Asphaug E (2002) Impact tsunami-Eltanin. Deep Sea Res II 49:1073–1080

    Article  Google Scholar 

  • Wolbach WS, Widicus S, Dypvik H (2001) A preliminary search for evidence of impact-related burning near the Mjølnir impact structure, Barents Sea [abs] Lunar Planet Sci Conf 32, abs #1332, CD-ROM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylfest Glimsdal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glimsdal, S., Pedersen, G.K., Langtangen, H.P., Shuvalov, V., Dypvik, H. (2010). The Mjølnir Tsunami. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_10

Download citation

Publish with us

Policies and ethics