Skip to main content

Limbal Stem Cell Transplantation: Surgical Techniques and Results

  • Chapter
Book cover Cornea and External Eye Disease

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 1389 Accesses

Core Messages

  • The ocular surface is composed of two functionally specialized epithelia that are both essential to maintain the surface integrity of the eye and the optical transparency of the cornea.

  • Ocular surface failure is thought to result from destruction of limbal epithelial stem cells (LESCs).

  • Penetrating keratoplasty (PKP) is seldom a successful treatment for surface failure because the limbal stem cells are not replaced, and thus the epithelial surface over the PKP will again ultimately fail.

  • Ocular surface reconstruction (OSR) is the restoration of the normal function of the ocular surface by surgical transplantation of limbal epithelial stem cells.

  • Available options for limbal stem cell transplantation include conjunctival limbal autograft transplantation (CLAU), living-related conjunctival limbal allograft transplantation (lr-CLAL), kera-tolimbal allograft transplantation (KLAL), and ex vivo expansion and transplantation of cultured limbal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snell RA, Lemp MA (eds) (1998). Clinical anatomy of the eye 2nd edn. Blackwell Science, MA, U.S.A, pp 132–213

    Google Scholar 

  2. Tsubota K, Tseng SC (2002) Nordlund ML. In: Holland EJ, Mannis MJ (eds) Ocular surface disease, 1st edn. Springer, New York

    Google Scholar 

  3. Gipson IK (1992) Adhesive mechanisms of the corneal epithelium. Acta Ophthalmol Suppl (202):13–17

    Google Scholar 

  4. Gipson IK, Spurr-Michaud SJ, Tisdale AS (1988) Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing. Dev Biol 126:253–262

    PubMed  CAS  Google Scholar 

  5. Klyce SD, Crosson CE (1985) Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res 4:323–331

    PubMed  CAS  Google Scholar 

  6. Ambati BK, Nozaki M, Singh N et al (2006) Corneal avas-cularity is due to soluble VEGF receptor-1. Nature 443:993–997

    PubMed  CAS  Google Scholar 

  7. Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24:1442–1443

    PubMed  CAS  Google Scholar 

  8. Pellegrini G, Golisano O, Paterna P et al (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782

    PubMed  CAS  Google Scholar 

  9. Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425

    PubMed  CAS  Google Scholar 

  10. Dua HS, Saini JS, Azuara-Blanco A et al (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 48:83–92

    PubMed  CAS  Google Scholar 

  11. Daniels JT, Dart JK, Tuft SJ et al (2001) Corneal stem cells in review. Wound Repair Regen 9:483–494

    PubMed  CAS  Google Scholar 

  12. Lavker RM, Sun TT (2003) Epithelial stem cells: the eye provides a vision. Eye 17:937–942

    PubMed  CAS  Google Scholar 

  13. Cotsarelis G, Cheng SZ, Dong G et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    PubMed  CAS  Google Scholar 

  14. Ramaesh K, Dhillon B (2003) Ex vivo expansion of corneal limbal epithelial/stem cells for corneal surface reconstruction. Eur J Ophthalmol 13:515–524

    PubMed  CAS  Google Scholar 

  15. Tseng SC (1989) Concept and application of limbal stem cells. Eye 3(Pt 2):141–157

    PubMed  Google Scholar 

  16. Majo F, Rochat A, Nicolas M et al (2008) Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456:250–254

    PubMed  CAS  Google Scholar 

  17. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    PubMed  CAS  Google Scholar 

  18. Dua HS, Gomes JA, Singh A (1994) Corneal epithelial wound healing. Br J Ophthalmol 78:401–408

    PubMed  CAS  Google Scholar 

  19. Hanna C, O'Brien JE (1960) Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol 64:536–539

    PubMed  CAS  Google Scholar 

  20. Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102:1476–1485

    PubMed  CAS  Google Scholar 

  21. Huang AJ, Tseng SC (1991) Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 32:96–105

    PubMed  CAS  Google Scholar 

  22. Tseng SCG, Espana EM (2005) Di Pascuale MA. In: Tasman W, Jaeger EA (eds) Duane's clinical ophthalmology on CD-ROM, 2005th edn. Lippincott Williams and Wilkins, Baltimore, PA

    Google Scholar 

  23. Nishida K, Kinoshita S, Ohashi Y et al (1995) Ocular surface abnormalities in aniridia. Am J Ophthalmol 120:368–375

    PubMed  CAS  Google Scholar 

  24. Huang AJ, Tseng SC, Kenyon KR (1990) Alteration of epithelial paracellular permeability during corneal epithelial wound healing. Invest Ophthalmol Vis Sci 31:429–435

    PubMed  CAS  Google Scholar 

  25. Calonge M, Diebold Y, Saez V et al (2004) Impression cytology of the ocular surface: a review. Exp Eye Res 78:457–472

    PubMed  CAS  Google Scholar 

  26. Dart J (1997) Impression cytology of the ocular surface— research tool or routine clinical investigation? Br J Ophthalmol 81:930

    PubMed  CAS  Google Scholar 

  27. Holland EJ (1996) Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophthalmol Soc 94:677–743

    PubMed  CAS  Google Scholar 

  28. Holland EJ, Schwartz GS (1996) The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea 15:549–556

    PubMed  CAS  Google Scholar 

  29. Clinch TE, Goins KM, Cobo LM (1992) Treatment of contact lens-related ocular surface disorders with autologous conjunctival transplantation. Ophthalmology 99:634–638

    PubMed  CAS  Google Scholar 

  30. Fujishima H, Shimazaki J, Tsubota K (1996) Temporary corneal stem cell dysfunction after radiation therapy. Br J Ophthalmol 80:911–914

    PubMed  CAS  Google Scholar 

  31. Espana EM, Di Pascuale MA, He H et al (2004) Characterization of corneal pannus removed from patients with total limbal stem cell deficiency. Invest Ophthalmol Vis Sci 45:2961–2966

    PubMed  Google Scholar 

  32. Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230

    PubMed  Google Scholar 

  33. Gomes JA, Santos MS, Ventura AS et al (2003) Amniotic membrane with living related corneal limbal/conjunctival allograft for ocular surface reconstruction in Stevens-Johnson syndrome. Arch Ophthalmol 121:1369–1374

    PubMed  Google Scholar 

  34. Dua HS, Azuara-Blanco A (2000) Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. Br J Ophthalmol 84:273–278

    PubMed  CAS  Google Scholar 

  35. Espana EM, Raju VK, Tseng SC (2002) Focal limbal stem cell deficiency corresponding to an iris coloboma. Br J Ophthalmol 86:1451–1452

    PubMed  CAS  Google Scholar 

  36. Espana EM, Grueterich M, Romano AC et al (2002) Idiopathic limbal stem cell deficiency. Ophthalmology 109:2004–2010

    PubMed  Google Scholar 

  37. Gass JD (1962) The syndrome of keratoconjunctivitis, superficial moniliasis, idiopathic hypoparathyroidism and Addison's disease. Am J Ophthalmol 54:660–674

    PubMed  CAS  Google Scholar 

  38. Geerling G, Maclennan S, Hartwig D (2004) Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 88:1467–1474

    PubMed  CAS  Google Scholar 

  39. Poon AC, Geerling G, Dart JK et al (2001) Autologous serum eyedrops for dry eyes and epithelial defects: clinical and in vitro toxicity studies. Br J Ophthalmol 85:1188–1197

    PubMed  CAS  Google Scholar 

  40. Young AL, Cheng AC, Ng HK et al (2004) The use of autologous serum tears in persistent corneal epithelial defects. Eye 18:609–614

    PubMed  CAS  Google Scholar 

  41. Dua HS (1998) The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol 82:1407–1411

    PubMed  CAS  Google Scholar 

  42. Anderson DF, Ellies P, Pires RThet al (2001) Amniotic membrane transplantation for partial limbal stem cell deficiency. Br J Ophthalmol 85:567–575

    PubMed  CAS  Google Scholar 

  43. Pires RT, Chokshi A, Tseng SC (2000) Amniotic membrane transplantation or conjunctival limbal autograft for limbal stem cell deficiency induced by 5-fluorouracil in glaucoma surgeries. Cornea 19:284–287

    PubMed  CAS  Google Scholar 

  44. Tseng SC, Prabhasawat P, Barton K et al (1998) Amniotic membrane transplantation with or wit hout limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    PubMed  CAS  Google Scholar 

  45. Fernandes M, Sridhar MS, Sangwan VS et al (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653

    PubMed  Google Scholar 

  46. Tosi GM, Massaro-Giordano M, Caporossi A et al (2005) Amniotic membrane transplantation in ocular surface disorders. J Cell Physiol 202:849–851

    PubMed  CAS  Google Scholar 

  47. Dua HS, Gomes JA, King AJ et al (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    PubMed  Google Scholar 

  48. Dua HS, Joseph A, Shanmuganathan VA et al (2003) Stem cell differentiation and the effects of deficiency. Eye 17:877–885

    PubMed  CAS  Google Scholar 

  49. Espana EM, Di PM, Grueterich M et al (2004) Keratolimbal allograft in corneal reconstruction. Eye 18:406–417

    PubMed  CAS  Google Scholar 

  50. Dua HS, Shanmuganathan VA, Powell-Richards AO et al (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532

    PubMed  CAS  Google Scholar 

  51. Kinoshita S, Adachi W, Sotozono C et al (2001) Characteristics of the human ocular surface epithelium. Prog Retin Eye Res 20:639–673

    PubMed  CAS  Google Scholar 

  52. Koizumi N, Inatomi T, Suzuki Thet al (2001) Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 108:1569–1574

    PubMed  CAS  Google Scholar 

  53. Rama P, Bonini S, Lambiase A et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485

    PubMed  CAS  Google Scholar 

  54. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    PubMed  CAS  Google Scholar 

  55. Holland EJ, Djalilian AR, Schwartz GS (2003) Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology 110:125–130

    PubMed  Google Scholar 

  56. Solomon A, Ellies P, Anderson DF et al (2002) Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology 109:1159–1166

    PubMed  Google Scholar 

  57. Ilari L, Daya SM (2002) Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmology 109:1278–1284

    PubMed  Google Scholar 

  58. Tsubota K, Shimmura S, Shinozaki N et al (2002) Clinical application of living-related conjunctival-limbal allograft. Am J Ophthalmol 133:134–135

    PubMed  Google Scholar 

  59. Daya SM, Ilari FA (2001) Living related conjunctival limbal allograft for the treatment of stem cell deficiency. Ophthalmology 108:126–133

    PubMed  CAS  Google Scholar 

  60. Reinhard T, Sundmacher R, Spelsberg H et al (1999) Homologous penetrating central limbo-keratoplasty (HPCLK) in bilateral limbal stem cell insufficiency. Acta Ophthalmol Scand 77:663–667

    PubMed  CAS  Google Scholar 

  61. Reinhard T, Spelsberg H, Henke L et al (2004) Long-term results of allogeneic penetrating limbo-keratoplasty in total limbal stem cell deficiency. Ophthalmology 111:775–782

    PubMed  Google Scholar 

  62. Spelsberg H, Reinhard T, Henke L et al (2004) Penetrating limbo-keratoplasty for granular and lattice corneal dystrophy: survival of donor limbal stem cells and intermediate-term clinical results. Ophthalmology 111:1528–1533

    PubMed  Google Scholar 

  63. Kenyon KR, Tseng SC (1989) Limbal autograf transplantation for ocular surface disorders. Ophthalmology 96:709–722

    PubMed  CAS  Google Scholar 

  64. Ronk JF, Ruiz-Esmenjaud S, Osorio M et al (1994) Limbal conjunctival autograft in a subacute alkaline corneal burn. Cornea 13:465–468

    PubMed  CAS  Google Scholar 

  65. Rao SK, Rajagopal R, Sitalakshmi G et al (1999) Limbal allografting from related live donors for corneal surface reconstruction. Ophthalmology 106:822–828

    PubMed  CAS  Google Scholar 

  66. Jenkins C, Tuft S, Liu C et al (1993) Limbal transplantation in the management of chronic contact-lens-associated epi-theliopathy. Eye 7(Pt 5):629–633

    PubMed  Google Scholar 

  67. Kwitko S, Marinho D, Barcaro S et al (1995) Allograft con-junctival transplantation for bilateral ocular surface disorders. Ophthalmology 102:1020–1025

    PubMed  CAS  Google Scholar 

  68. Tsubota K, Satake Y, Kaido M et al (1999) Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N Engl J Med 340:1697–1703

    PubMed  CAS  Google Scholar 

  69. Tsubota K, Satake Y, Ohyama M et al (1996) Surgical reconstruction of the ocular surface in advanced ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Am J Ophthalmol 122:38–52

    PubMed  CAS  Google Scholar 

  70. Shortt AJ, Secker GA, Notara MD et al (2007) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52:483–502

    PubMed  Google Scholar 

  71. Barrandon Y, Green H (1987) Three clonal types of kerati-nocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84:2302–2306

    PubMed  CAS  Google Scholar 

  72. Green H, Rheinwald JG, Sun TT (1977) Properties of an epithelial cell type in culture: the epidermal keratinocyte and its dependence on products of the fibroblast. Prog Clin Biol Res 17:493–500

    PubMed  CAS  Google Scholar 

  73. Rheinwald JG (1980) Serial cultivation of normal human epidermal keratinocytes. Methods Cell Biol 21A:229–254

    PubMed  CAS  Google Scholar 

  74. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of kera-tinizing colonies from single cells. Cell 6:331–343

    PubMed  CAS  Google Scholar 

  75. Koizumi N, Inatomi T, Suzuki Thet al (2001) Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol 119:298–300

    PubMed  CAS  Google Scholar 

  76. Shimazaki J, Aiba M, Goto E et al (2002) Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 109:1285–1290

    PubMed  Google Scholar 

  77. Grueterich M, Espana EM, Touhami A et al (2002) Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology 109:1547–1552

    PubMed  Google Scholar 

  78. Nakamura T, Koizumi N, Tsuzuki M et al (2003) Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea 22:70–71

    PubMed  Google Scholar 

  79. Sangwan VS, Vemuganti GK, Singh S et al (2003) Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 23:169–174

    PubMed  CAS  Google Scholar 

  80. Sangwan VS, Vemuganti GK, Iftekhar G et al (2003) Use of autologous cultured limbal and conjunctival epithelium in a patient with severe bilateral ocular surface disease induced by acid injury: a case report of unique application. Cornea 22:478–481

    PubMed  Google Scholar 

  81. Nakamura T, Inatomi T, Sotozono C et al (2004) Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmol Scand 82:468–471

    PubMed  Google Scholar 

  82. Sangwan VS, Murthy SI, Vemuganti GK et al (2005) Cultivated corneal epithelial transplantation for severe ocular surface disease in vernal keratoconjunctivitis. Cornea 24:426–430

    PubMed  Google Scholar 

  83. Sangwan VS, Matalia H P, Vemuganti GK et al (2006) Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54:29–34

    PubMed  Google Scholar 

  84. Grueterich M, Espana E, Tseng SC (2002) Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci 43:63–71

    PubMed  Google Scholar 

  85. Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646

    PubMed  Google Scholar 

  86. Pellegrini G, Traverso CE, Franzi AThet al (1997) Longterm restoration of damaged corneal surfaces with autolo-gous cultivated corneal epithelium. Lancet 349:990–993

    PubMed  CAS  Google Scholar 

  87. Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986

    PubMed  CAS  Google Scholar 

  88. Schwab IR, Reyes M, Isserof RR (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421–426

    PubMed  CAS  Google Scholar 

  89. Daya SM, Watson A, Sharpe JR et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477

    PubMed  Google Scholar 

  90. Nakamura T, Inatomi T, Sotozono C et al (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1765–1772

    PubMed  Google Scholar 

  91. Kim HS, Jun Song X, de Paiva CS et al (2004) Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures. Exp Eye Res 79:41–49

    PubMed  CAS  Google Scholar 

  92. Zhang X, Sun H, Tang X et al (2005) Comparison of cell-suspension and explant culture of rabbit limbal epithelial cells. Exp Eye Res 80:227–233

    PubMed  CAS  Google Scholar 

  93. Shortt AJ, Secker GA, Rajan MS et al (2008) Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 115(11):1989–1997

    PubMed  Google Scholar 

  94. Nakamura T, Inatomi T, Sotozono C et al (2004) Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol 88:1280–1284

    PubMed  CAS  Google Scholar 

  95. Nishida K, Yamato M, Hayashida Y et al (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    PubMed  CAS  Google Scholar 

  96. Inatomi T, Nakamura T, Koizumi N et al (2006) Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol 141:267–275

    PubMed  Google Scholar 

  97. Inatomi T, Nakamura T, Kojyo M et al (2006) Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol 142(5):757–764

    PubMed  Google Scholar 

  98. de Paiva CS, Chen Z, Corrales RM et al (2005) ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23:63–73

    PubMed  Google Scholar 

  99. Watanabe K, Nishida K, Yamato M et al (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565:6–10

    PubMed  CAS  Google Scholar 

  100. Budak MT, Alpdogan OS, Zhou M et al (2005) Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 118:1715–1724

    PubMed  CAS  Google Scholar 

  101. Sangwan VS, Matalia H P, Vemuganti GK et al (2005) Early results of penetrating keratoplasty after cultivated limbal epithelium transplantation. Arch Ophthalmol 123:334–340

    PubMed  Google Scholar 

  102. Sharpe JR, Daya SM, Dimitriadi M et al (2007) Survival of cultured allogeneic limbal epithelial cells following corneal repair. Tissue Eng 13:123–132

    PubMed  Google Scholar 

  103. Collin C, Ouhayoun J P, Grund C et al (1992) Suprabasal marker proteins distinguishing keratinizing squamous epi-thelia: cytokeratin 2 polypeptides of oral masticatory epithelium and epidermis are different. Differentiation 51:137–148

    PubMed  CAS  Google Scholar 

  104. Hata K, Kagami H, Ueda M et al (1995) The characteristics of cultured mucosal cell sheet as a material for grafting; comparison with cultured epidermal cell sheet. Ann Plast Surg 34:530–538

    PubMed  CAS  Google Scholar 

  105. Juhl M, Reibel J, Stoltze K (1989) Immunohistochemical distribution of keratin proteins in clinically healthy human gingival epithelia. Scand J Dent Res 97:159–170

    PubMed  CAS  Google Scholar 

  106. Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M et al (2009) Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 27:642–652

    PubMed  CAS  Google Scholar 

  107. Nakamura T, Ishikawa F, Sonoda KH et al (2005) Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci 46:497–503

    PubMed  Google Scholar 

  108. Ozerdem U, Alitalo K, Salven P et al (2005) Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 46:3502–3506

    PubMed  Google Scholar 

  109. Ma Y, Xu Y, Xiao Z et al (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24:315–321

    PubMed  Google Scholar 

  110. Chee KY, Kicic A, Wiffen SJ (2006) Limbal stem cells: the search for a marker. Clin Experiment Ophthalmol 34:64–73

    PubMed  Google Scholar 

  111. Di IE, Barbaro V, Ruzza A et al (2005) Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 102:9523–9528

    Google Scholar 

  112. Pellegrini G, Dellambra E, Golisano O et al (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98:3156–3161

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shortt, A.J., Tuft, S.J., Daniels, J.T. (2010). Limbal Stem Cell Transplantation: Surgical Techniques and Results. In: Reinhard, T., Larkin, F. (eds) Cornea and External Eye Disease. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85544-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85544-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85543-9

  • Online ISBN: 978-3-540-85544-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics