Skip to main content

Heuristics and meta-heuristics for lot sizing and scheduling in the soft drinks industry: a comparison study

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 128))

Summary

This chapter studies a two-level production planning problem where, on each level, a lot sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times must be solved. The problem can be found in soft drink companies where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. Models and solution approaches proposed so far are surveyed and conceptually compared. Two different approaches have been selected to perform a series of computational comparisons: an evolutionary technique comprising a genetic algorithm and its memetic version, and a decomposition and relaxation approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toledo C. F. M. (2005) The integrated two-stage lot sizing and scheduling problem, Doctoral Thesis (in Portuguese), State University of Campinas, Brazil

    Google Scholar 

  2. Drexl A., Kimms A. (1997) Lot sizing and scheduling - survey and extensions, European Journal of Operational Research 99: 221-235.

    Article  MATH  Google Scholar 

  3. Bitran G. R., Yanasse H.H. (1982) Computational complexity of the capacited lot size problem, Management Science 28(10): 1174-1186.

    Article  MATH  MathSciNet  Google Scholar 

  4. Clark A. R., Clark S. J. (2000) Rolling-horizon lot sizing when set-up times are sequence-dependent, International Journal of Production Research 38(10): 2287-2307.

    Article  MATH  Google Scholar 

  5. Fleischmann B. (1994) The discrete lot sizing and scheduling problem with sequence-dependent setup costs, European Journal of Operational Research, 75: 395-404.

    Article  MATH  Google Scholar 

  6. Gupta D., Magnusson T. (2005) The capacitated lot sizing and scheduling problem with sequence-dependent setup costs and setup times, Computers & Operations Research 32: 727-747.

    Article  MATH  MathSciNet  Google Scholar 

  7. Haase K., Kimms A. (2000) Lot sizing and scheduling with sequence dependent setup costs and times and efficient rescheduling opportunities, International Journal of Production Economics 66: 159-169.

    Article  Google Scholar 

  8. Meyr H. (2000) Simultaneous lot sizing and scheduling by combining local search with dual reoptimization, European Journal of Operational Research120: 311-326.

    Article  MATH  MathSciNet  Google Scholar 

  9. Berreta R. E., Frana P. M., Armentano V. (2005) Meta-heuristic approaches for the multilevel resource-constrained lot sizing problem with setup and lead times, Asia-Pacific Journal of Operational Research 22(2): 261-286.

    Article  MathSciNet  Google Scholar 

  10. Frana P. M., Armentano V., Berretta R. E., Clark, A. R. (1997) A heuristic method for lot sizing in multi-stage systems, Computers & Operations Research 24 (9): 861-874.

    Article  Google Scholar 

  11. Kimms A. (1997) Demand shuffle - A method for multi-level proportional lot sizing and scheduling, Naval Research Logistics 44: 319-340.

    Article  MATH  Google Scholar 

  12. Kimms A. (1997) Multi-level lot sizing and scheduling - Methods for capacitated, dynamic, and deterministic models, Physica, Heidelberg.

    MATH  Google Scholar 

  13. zdamar L., Barbarosoglu G. (2000) An integrated lagragean relaxation-simulated annealing approach to the multi-level multi-item capacitated lot sizing problem, International Journal of Production Economics 68: 319-331.

    Article  Google Scholar 

  14. Kang S., Malik K., Thomas L. J. (1999) Lot sizing and scheduling on parallel machines with sequence-dependent setup costs, Management Science 45: 273-289.

    Article  Google Scholar 

  15. Kuhn H., Quadt, D. (2002) Lot sizing and scheduling in semiconductor assembly - A hierarchical planning approach. In: Mackulak G. T., Fowler J. W., Schmig A. (eds), Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Tempe, USA: 211-216.

    Google Scholar 

  16. Meyr H. (2002) Simultaneous lot sizing and scheduling on parallel machines, European Journal of Operational Research 139: 277-292.

    Article  MATH  MathSciNet  Google Scholar 

  17. Quadt D., Kuhn H. (2003) Production planning in semiconductor assembly, Working Paper, Catholic University of Eichsttt-Ingolstadt.

    Google Scholar 

  18. Stadtler H. (2003) Multilevel lot sizing with setup times and multiple constrained resources: internally rolling schedules with lot sizing windows 51(3): 487-502.

    Google Scholar 

  19. Toledo C.F.M., Kimms A., Frana P.M, Morabito R.(2006) A mathematical model for the synchronized and integrated two-level lot sizing and scheduling problem, Journal of Operational Research Society: under review.

    Google Scholar 

  20. Bitran G. R., Matsuo H. (1986) Approximation formulations for the single product capacitated lot size problem, Operations Research 34: 63-74.

    Article  MATH  MathSciNet  Google Scholar 

  21. Fleischmann B., Meyr, H. (1997) The general lot sizing and scheduling problem, OR Spektrum 19: 11-21.

    Article  MATH  MathSciNet  Google Scholar 

  22. Drexl A., Haase K. (1997) Proportional lotsizing and scheduling, International Journal of Production Economics 40: 73-87.

    Article  Google Scholar 

  23. Toledo C. F. M., Frana P. M., Morabito R., Kimms A. (2007) A multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem, International Journal of Production Research: in press.

    Google Scholar 

  24. Holland J. H. (1975) Adaptation in natural and artificial systems, The University of Michigan Press.

    Google Scholar 

  25. Goldberg D. E. (1989) Genetic algorithms in search, optimization, and machine learning, Addison Wesley.

    Google Scholar 

  26. Michalewicz Z. (1996) Genetic Algorithms + data structure = evolution programs, Springer-Verlag.

    Google Scholar 

  27. Moscato P. (1989) On evolution, search, optimization, genetic algorithms, and martial arts: towards memetic algorithms, Technical Report, Caltech Concurrent Computation Program, C3P Report 826.

    Google Scholar 

  28. Mendes A. S. (2003) The framework NP-Opt and its applications to optimization problems, Doctoral Thesis (in Portuguese), State University of Campinas - Brazil.

    Google Scholar 

  29. Ferreira D., Rangel S., Morabito R. (2007) Solution approaches for the soft drink integrated lot sizing and scheduling problem, European Journal of Operational Research (under review).

    Google Scholar 

  30. Clark A. R. (2003) Hybrid heuristics for planning lot setups and sizes, Computers & Industrial Engineering 45: 545-562.

    Article  Google Scholar 

  31. Moscato P. (1989) On genetic crossover operators for relative order preservation. C3P Report 778, California Institute of Technology, Pasadena, CA 91125.

    Google Scholar 

  32. Dawkins R. (1976) The selfish gene. Oxford University Press Oxford.

    Google Scholar 

  33. Gen M., Cheng R. (1997) Genetic algorithms & engineering design. John Wiley & Sons New York NY.

    Google Scholar 

  34. Goldberg D.E. (2002) The design of innovation: lessons from and for competent genetic algorithms. Addison-Wesley Reading, MA.

    MATH  Google Scholar 

  35. Hart W. E., Krasnogor N., Smith J.E. (Eds.) (2005) Recent advances in memetic algorithms series: studies in fuzziness and soft computing 166.

    Google Scholar 

  36. Weiner J. (1995) The beak of the finch. Vintage Books New York.

    Google Scholar 

  37. Mendes A. S., Frana P. M., Moscato P. (2001) NP-Opt: an optimization framework for NP problems. Proceedings of POM2001: 82-89 Guaruj, Brazil.

    Google Scholar 

  38. Frana P. M., Mendes A. S., Moscato P. (2001) A memetic algorithm for the total tardiness single machine scheduling problem. European Journal of Operational Research 1(132): 224-242.

    Article  Google Scholar 

  39. Sikora R. (1996) A genetic algorithm for integrating lot sizing and sequencing in scheduling a capacitated flow line. Computers & Industrial Engineering 30(4): 969-981.

    Article  Google Scholar 

  40. zdamar L., Birbil S. I. (1998) Hybrid heuristic for the capacitated lot sizing and loading problem with setup times and overtime decisions. European Journal of Operational Research 110: 525-547.

    Article  Google Scholar 

  41. Dellaert N., Jeunet J., Jonard N. (2000) A genetic algorithm to solve the general multi-level lot sizing problem with time-varying costs. International Journal of Production Economics 68: 241-257.

    Article  Google Scholar 

  42. Kimms A. (1999) A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Computers & Operations Research 26: 829-848.

    Article  MATH  Google Scholar 

  43. Dueck G., Scheuer T. (1990) Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics 90: 161-175.

    Article  MATH  MathSciNet  Google Scholar 

  44. Ferreira D., Morabito R., Rangel S. (2007) A MIP model and relax and fix heuristics for production planning and scheduling in a small soft drink plant (in Portuguese), Produo (So Paulo): in press.

    Google Scholar 

  45. ILOG (2001) Using the CPLEX Callable Library, Copyright, ILOG.

    Google Scholar 

  46. Wolsey L. A. (1998) Integer Programming, John Wiley & Sons.

    Google Scholar 

  47. Dillemberger C., Escudero L. F., Wu Zhang A. W. (1994) On practical resource allocation for production planning and scheduling with period overlapping setups, European Journal of Operational Research 75: 275-286.

    Article  Google Scholar 

  48. Escudero L. F., Salmeron J. (2005) On a fix-and-relax framework for a class of project scheduling problems, Annals of Operations Research 140: 163-188.

    Article  MATH  MathSciNet  Google Scholar 

  49. Pedroso J. P., Kubo M. (2005) Hybrid tabu search for lot sizing problems, in Hybrid Meta-heuristics, Lecture Notes in Computer Science 3636: 66-77, Springer, Berlin.

    Google Scholar 

  50. Federgruen A., Meissner J., Tzur M. (2007) Progressive interval heuristics for multi-item capacitated lot sizing problems, Operations Research, 55 (3): 490-502.

    Article  MATH  MathSciNet  Google Scholar 

  51. Ferreira D. (2006) Approaches to the integrated problem of the lot sizing and scheduling of the soft drink production, Doctoral Thesis (in Portuguese), Federal University of So Carlos, Brazil.

    Google Scholar 

  52. Fourer R., Gay M. D., Kernighan B. W. (1993) AMPL - A modeling language for mathematical programming, The Scientific Press, Danvers, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferreira, D., França, P.M., Kimms, A., Morabito, R., Rangel, S., Toledo, C.F.M. (2008). Heuristics and meta-heuristics for lot sizing and scheduling in the soft drinks industry: a comparison study. In: Xhafa, F., Abraham, A. (eds) Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Studies in Computational Intelligence, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78985-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78985-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78984-0

  • Online ISBN: 978-3-540-78985-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics