
8

Heuristics and meta-heuristics for lot sizing
and scheduling in the soft drinks industry:
a comparison study

D. Ferreira1, P.M. França2, A. Kimms3, R. Morabito1, S. Rangel4, and
C.F.M. Toledo5

1 Departamento de Engenharia de Produção, Universidade Federal de Sao Carlos,
C.P. 676, 13565-905, Sao Carlos, SP, Brazil deise@dep.ufscar.br;
morabito@power.ufscar.br

2 Departamento de Matemática, Estat́ıstica e Computação, Universidade Estadual
Paulista, C.P. 1234, 19060-400, Presidente Prudente, SP, Brazil
paulo.morelato@fct.unesp.br

3 Dept. of Technology and Operations Management, University of Duisburg-Essen,
47048, Duisburg, Germany alf.kimms@uni-duisburg-essen.de

4 Departamento de Ciência da Computação e Estat́ıstica, Universidade Estadual
Paulista, Rua Cristóvão Colombo, 2265, 15054-000, S. J. do Rio Preto, SP,
Brazil socorro@ibilce.unesp.br

5 Departamento de Ciência da Computação, Universidade Federal de Lavras, C.P.
3037, 37200-000, Lavras, MG, Brazil claudio@dcc.ufla.br

Summary. This chapter studies a two-level production planning problem where,
on each level, a lot sizing and scheduling problem with parallel machines, capac-
ity constraints and sequence-dependent setup costs and times must be solved. The
problem can be found in soft drink companies where the production process involves
two interdependent levels with decisions concerning raw material storage and soft
drink bottling. Models and solution approaches proposed so far are surveyed and
conceptually compared. Two different approaches have been selected to perform a
series of computational comparisons: an evolutionary technique comprising a genetic
algorithm and its memetic version, and a decomposition and relaxation approach.

Key words: Two-level Production Planning, Lot Sizing, Scheduling, Soft
Drinks Industry, Genetic Algorithm, Memetic Algorithm.

8.1 Introduction

The motivation behind writing this contribution is to offer the academic
and practitioner industrial engineering community dealing with planning and
scheduling tasks in the soft drinks industry a text with the most recent

D. Ferreira et al.: Heuristics and meta-heuristics for lot sizing and scheduling in the soft drinks

industry: a comparison study, Studies in Computational Intelligence (SCI) 128, 169–210 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

170 Ferreira et al.

contributions to the field and also a comparative study with some selected
approaches. A major concern that inspired the chapter was to review modern
techniques especially designed for building production schedules applied to
real world settings. The technical literature devoted to planning and schedul-
ing is vast and there are plenty of sophisticated methods. However, the
specificities of the soft drinks industry require dedicated models and specific
solution methodologies that justify a text like this one. Thus, the objective of
this chapter is first to discuss the planning features of a soft drinks plant and
then to assess the main suitable mathematical models, as well as to explore
and evaluate the quality and computing time of some selected solution methods.

8.1.1 Soft Drinks Plant

The consumption of soft drinks has grown considerably worldwide. In Brazil,
where part of the present research has been carried out, there are more than
800 plants supplying a 13-billion liter annual consumer market, which is the
third in the world. This figure represents an amount which is twice as large
as ten years ago. The diversity of products offered to consumers, the scale
of plants and the complexity of modern filling lines require the adoption of
optimization-based programs to produce efficient production plans. Indeed, a
plenty of specialized commercial packages have been launched over the last
years as an effort to overcome the difficulties human schedulers have faced.
However, in most cases the complexity of the planning task imposes hard
manual adjustments for the production schedules produced by those pack-
ages. The biggest contribution of the approaches studied in this chapter is to
propose integrated optimization-based models able to encompass both the two
interdependent production levels, namely the tank level and the bottling level.
Due to its inherent complexity, the needed synchronization between these two
levels is disregarded by commercial packages thus often leading to ineffective
production schedules.

The production process found in medium to large plants consists of an
upper level with capacitated mixing tanks used to prepare and store liquids
which are pumped to the lower level constituted by bottling or canning lines
disposed in parallel (Fig. 8.1). At the tank level, decisions concerning the
amount and the time the raw materials have to be stored in every available
tank must be made. Analogously, at the production line level the lot size of
each demanded item and its corresponding schedule in each line must also be
determined. However, a line is able to meet the weekly demand only if the
necessary amount of raw material can be stored in a connected tank. Indeed,
a solution which integrates these two lot sizing and scheduling problems has
to be determined. Moreover, once the necessary amount of raw material is
stored, it can not stay for a long time waiting to be pumped to lines. There
is a synchronization problem here because the production in lines and the
storage in tanks must be compatible with each other throughout the time
horizon. Hence, a lot sizing and scheduling problem has to be solved at each

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 171

one of these two-levels taking into account that the corresponding decisions
must be synchronized.

Tanks

Products

Production
lines

Fig. 8.1: The two-level production process.

Possibly the two-level synchronization is the most challenging aspect of
this problem. Due to this fact, this problem is called the Synchronized and
Integrated Two-level Lot sizing and Scheduling Problem (SITLSP) [1].

The raw materials are the flavors of the liquids which are bottled in the
production lines. For technical reasons, a tank is only filled up when empty
and two different raw materials cannot be stored at the same time in the same
tank. A sequence-dependent changeover time (setup) of up to several hours
occurs to clean and fill up a tank, even if the same soft drink is replaced.
A sequence-dependent setup time means that the time required to prepare
and fill a tank for the next liquid depends on the liquid previously stored.
Indeed, the setup time when a diet drink follows a plain flavor drink is much
longer when the sequence is inverted. Nothing can be pumped to a production
line from the tank during the setup time. One tank can be connected to
several production lines which will share the same raw material. Moreover,
the production lines can be connected to any tank. However, it can receive
raw material from only one tank at a time. The final product (item) is defined
by the flavor of the soft drink and the type of container (glass bottles, plastic
bottles or cans) of different sizes. In large plants it is common to find situations
where various products can share a common production line and various lines
can produce the same product in parallel. The production schedule also has
to take into consideration the impact of product changeovers on the effective
capacity of the production lines. As in the mixing tanks, these changeover
times (setups) are also sequence-dependent and occur whenever a line has
two different products switched.

The weekly demands have to be met within a time horizon of a certain
number of weeks. Since the forecasts of customer orders are error-prone, there

172 Ferreira et al.

is little interest in seeking solutions in large horizons. Instead, it is more
realistic to work in a rolling-horizon basis with a 3 or 4-week time horizon.
The excessive number of final products leads to inventory costs. There are
also inventory costs for the storage of raw materials in tanks in various time
periods. The sequence-dependent setup costs for products and raw materials
are proportional to the sequence-dependent setup times in lines and tanks,
respectively.

As synchronization is a key feature to be taken into consideration, a deeper
explanation in this respect is now in order. As said before, the lines must wait
until the liquids are ready to be pumped to them. On the other hand, the
liquids stored in tanks can not be sent to the lines unless they are ready to
initiate the bottling process. Fig. 8.2 illustrates the commitment between the
two levels.

P1 P2 P3 P3 P4 P5

Micro - 1

rmA
Tank

Line

Micro - 2 Micro - 3 Micro - 4 Micro -5 Micro - 6

rmB rmC rmC rmD rmD

Fig. 8.2: Batches sequenced but not synchronized.

Observe that batches of liquids and items are properly sequenced in the
tank and in the line, respectively, but they are not synchronized. The gaps
between two batches of liquids (rmA, rmB, rmC, rmD) and items (P1, P2,
P3, P4, P5) represent given changeover times. The planning horizon is divided
into 6 micro-periods. Notice that item P3 is produced in both micro-periods
3 and 4; it uses the same liquid rmC but needs tank replenishment. Also
observe that the same liquid rmD is used in distinct products P4 and P5
because they make use of, say, different bottle sizes. Due to the discrepancies
between tank and line setup times, the product batches have to be delayed by
inserting idle times (black rectangles) in the production line in micro-periods
1-4 while the liquid batches must be delayed as well by inserting idle times
(empty rectangles) in micro-periods 5 and 6, as shown in Fig. 8.3.

Given that the matter of synchronization has to be treated by postpon-
ing batches, it causes impact on the capacities of tanks and production lines
and may result in infeasible schedules. Therefore, these actions must be con-
sidered together with lot sizing and scheduling decisions. Thinking in terms
of mathematical models, they must incorporate decision variables especially
designed to deal with the crucial issue of synchronization thus adding substan-
tial complexity to model building and implementation of solution techniques.

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 173

Micro - 1

rmA
Tank

Micro - 2 Micro - 3 Micro - 4 Micro -5 Micro - 6

rmB rmC rmC rmD rmD

P5P3 P3 P4P1 P2
Line

Fig. 8.3: Sequenced and synchronized batches.

8.1.2 Literature Review

The SITLSP is a two-level lot sizing and scheduling problem with some par-
ticular considerations - such as the two-level synchronization - which render
it much more complex. In this literature review the main published articles
addressing the SITLSP itself or similar problems dealing with the planning
and scheduling tasks in the soft drinks industry will be summarized and com-
mented on. As a result of this review, the two most promising methods are
selected and then described in detail in the next sections, followed by a com-
putational study which compares their performances and application fields.

The SITLSP addresses various issues of classical lot sizing and scheduling
problems that have been dealt with in the literature before. We refer to [2] and
the references therein for overviews in capacitated lot sizing and scheduling
problems. The capacitated lot sizing and scheduling problem is a NP-hard
optimization problem [3], but finding a feasible solution is easy (e.g., a lot-
for-lot like policy) if no setup times are to be taken into account. If setup
times are present, the problem of finding a feasible solution is NP-complete
already. A discussion of lot sizing and scheduling with sequence-dependent
setup costs or sequence-dependent setup times can be found in e.g. [4]- [8].
Publications addressing multi-level lot sizing (scheduling) problems can be
found in e.g. [9]- [13]. Studies regarding these problems with parallel machines
are found in e.g. [4], [14]- [18].

However, to the best of our knowledge, the only work that comes close
to the SITLSP is the one described in [16], which is a multi-level extension
of [8]. In this approach, however, it might be necessary to split up a lot into
smaller ones in order not to lose generality. This would not be a practical idea
in solving the SITLSP because every new lot for the tanks requires a new
setup, which is not desired.

Focusing the attention only on articles which specifically deal with the
SITLSP, one can cite [19] where an extensive mixed-integer mathematical
model describing the problem is presented. Unfortunately, due to its com-
plexity and size, the model had to be omitted in this chapter. Instead, a brief
explanation regarding its formulation is given next. The underlying idea to
create a model for the SITLSP combines issues from the General Lot sizing

174 Ferreira et al.

and Scheduling Problem (GLSP) and the Continuous Setup Lot Sizing Prob-
lem (CSLP). A comparison of the CSLP and GLSP and more details about
these problems can be found in [2], [20]- [22].

As shown in [19], the SITLSP model supposes that a planning horizon
is divided into T (macro-) periods of the same length. A maximum number
of slots (S for each line and S for each tank) is fixed for each macro-period
t = t1, t2, . . . , tT . The limited number of slot assignments is an idea taken from
the GLSP. This enables us to determine in the SITLSP for which liquid (raw
material) a particular slot in a particular line (tank) is reserved, and which
lot size (a lot of size zero is possible) should be scheduled. Fig. 8.4 illustrates
the idea. Consider T = 2 macro-periods, 5 raw materials (rmA, rmB, rmC,
rmD and rmE), 6 products (P1, P2, . . . , P6), 3 tanks (Tk1, Tk2 and Tk3)
and 3 lines (L1, L2 and L3). Suppose that the raw material rmA produces the
product P1, rmB produces P2 and P3, rmC produces P4, rmD produces
P5 and rmE produces P6. The total number of slots is S = S = 2 and it can
not be exceeded in each macro-period.

Tk1

Tk2

Tk3

L1

L2

L3

macro-period 1 macro-period 2

First slot Second slot First slot Second slot

rmC

rmA rmA rmB

rmCrmD rmD

P4 P4
P1 P1

P5 P5

P6

rmE
P2 P3

Fig. 8.4: Sequence of slots for tanks and lines.

Fig. 8.4 shows that only one slot is occupied by lots of raw materials and
products in tank Tk3 and line L3, respectively, during the first macro-period.
In the second macro-period, there is no slot occupied in Tk3 and L3. On the
other hand, two slots need to be occupied by lots of rmA in the first macro-
period of Tk1. This raw material is used to produce P1 which is assigned
to the two possible slots in the first macro-period of L1. In this case, the
necessary amount of rmA to produce P1 filled up Tk1 completely in the first
slot assignment. Another slot assignment of rmA is necessary to conclude the
production of P1. Refilling Tk1 with rmA leads to an interruption in L1, so
a second slot assignment of P1 in L1 is also made. Variables indexed by slots
in the SITLSP mathematical model made it possible to write constraints that
integrate the line and tank occupation [1, 19].

As well as the assignment of liquids to tanks and products for lines in
each macro-period, it is also necessary to synchronize the slots scheduled in

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 175

a two-level problem like this. This is done using the micro-period idea found
in the CSLP, where each macro-period t is divided into Tm micro-periods
with the same length. Furthermore, according to the CSLP assumptions, the
capacity of each micro-period can be total or partially occupied and only one
product type (item) can be produced per micro-period. These assumptions
are used in the SITLSP. Fig. 8.5 illustrates this idea using the assignment
shown in Fig. 8.4.

Tk1

Tk2

Tk3

L1

L2

L3

0 101 2 3 4 5 6 7 8 9 Time

macro-period 1 macro-period 2

micro-period

rmA rmA rmB

rmC rmCrmD rmD

rmE

P1 P1 P2 P3

P4 P4P5 P5

P6

Fig. 8.5: Synchronization between lines and tank slots.

The macro-periods are divided into 5 micro-periods of the same length.
The times necessary to prepare each tank (setup time) are represented now by
the slots with acronyms rmA, rmB, rmC, rmD and rmE. In the same way,
the processing time of each product is represented by the slots with symbols
P1, P2, P3, P4 and P5. For instance, the two slots of Tk1 occupied by rmA
indicate that the tank is ready to be used at the end of the first micro-period
and it is refilled with the same raw material between the third and fourth
micro-period. The micro-periods enable us to synchronize the beginning of P1
production in the second micro-period of L1 after the end of rmA setup time
in Tk1. Moreover, we can see when the refilling of Tk1 occurs in the second
slot of Tk1. This requires the interruption of P1 and the beginning of the
second slot occupation of P1 in L1, after the end of rmA setup time in Tk1.
The constraints and variables indexed by the micro-period make it possible
to describe these situations in the mathematical model of the SITLSP [1,19].

The objective function is to minimize the total sum of setup costs, in-
ventory holding costs, and production costs for tanks and production lines.
Observe that for a given demand a feasible solution may not exist. In order to
guarantee a feasible solution the model allows for shortages. This is modelled
by allowing every item a certain quantity of units to be “produced” in the first
period without using capacity. Naturally, a very high penalty M is attached
to such shortages so that, whenever there is a feasible solution that fulfills all
demands, one would prefer this one.

176 Ferreira et al.

In short, one can say that the main contribution of the approach used to
model the SITLSP is to integrate and synchronize two lot sizing and schedul-
ing problems. This is done using variables and constraints indexed by slots
and micro-periods. The variables and constraints indexed by slots help to in-
tegrate a feasible sequence of occupation in the two levels, while variables and
constraints indexed by micro-periods help to determine a feasible synchro-
nization in the two levels within the time horizon. The entire set of variables
and constraints is able to mathematically describe most of the decisions and
constraints present in the industrial problem studied here.

The SITLSP model is coded and solved using the GAMS/CPLEX package
that uses a branch-and-cut solution approach to find an optimal solution. For
small instances the method is fast and reliable but as problem size grows,
the number of distinct integer solutions increases exponentially, causing the
search to take too long even for finding the first integer feasible solution. The
computational results in a series of instances with T = 1, 2 , 3 and 4 macro-
periods and Tm = 5 micro-periods revealed that for T > 2 the method failed
in finding optimal solutions within 1 hour of execution time.

A second paper [23] dealing with the SITLSP introduces an evolutionary
approach capable of overcoming the limitations faced by the previous method
[19] which is not useful to solve real world instances. Being an approximate
approach, optimal solutions are not guaranteed but performance comparisons
carried out in the paper using a set of small instances with known optimal
solutions have shown good behavior in reasonable computing time.

Evolutionary algorithms (EAs) belong to a class of computational meth-
ods called bio-inspired systems that simulate biological processes such as
crossover, mutation and natural selection. The simulation of these processes
follows the method when searching for a solution (individual) of a specific
problem. The method begins by analyzing a set of problem solutions (pop-
ulation) and determines new solutions applying genetic operators (selection,
crossover and mutation) to the previous set of solutions. Some solutions (new
or old ones) are selected and form the new set of solutions for the next itera-
tion. This procedure is repeated until some stop criterion is satisfied. The first
work concerning EA was presented by [24] and details on their implementa-
tion can be found in [25] and [26]. A memetic algorithm (MA) is a hybrid
population-based approach [27] which combines the recognized strength of
population methods such as genetic algorithms (GA) with the intensification
capability of a local search. In a MA, all agents or individuals evolve solutions
until they are local minima of a certain neighborhood, i.e. after steps of re-
combination and mutation, a local search is applied to the resulting solutions.

The GA presented in [23] proposes a multi-population approach that can
be understood as a variant of island models. The method was developed using
the NP-Opt that is an object-oriented framework written in JAVA code [28].
This framework has optimization procedures based on evolutionary computa-
tion techniques to address NP-hard problems.

The computational experiments carried out with the GA approach on a set
of large instances with up to 12 macro-periods, 10 micro-periods and 15 final

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 177

products show that the method is able to solve real-world instances. Conse-
quently it was one of the approaches selected to take part in the comparisons
using real data.

Recently another interesting method capable of handling the SITLSP and
also applied to the planning and scheduling of soft drinks has been proposed.
Unlike the approach presented in [1] where a highly general (and complex)
model is introduced and solved by a commercial MIP package, the MIP model
formulated in [29] is more restricted and amenable to be solved by approxi-
mate approaches. Amongst other differences that will be pointed out in detail
in Section 8.3, the mathematical formulation is less general than the one pre-
sented in [1] as it forces the quantity of tanks to be the same as for the lines.
On the other hand it opens up the possibility that a tank can be filled with
all liquids needed by its line.

Alternatively from [1], which uses a MIP package for finding optimal so-
lutions, the solution approach adopted in [29] relies on different heuristic
methods to obtain approximate production schedules. The details of these
heuristics will be explained fully in the next section.

In [30] a mathematical programming model to deal with the planning
of a canning line at a drinks manufacturer is introduced. Compared to the
models presented in [1] and [29], this one is much more restricted because
it disregards any sequencing considerations when designing production plans.
Instead, it focuses only on planning issues, i.e., lot sizing problems. The MIP
model objective function minimizes inventories and backorder penalties. The
model allows for different setup times depending on whether the changeover
between canned products involves a change of liquid or not. However, the
model does not consider sequence-dependent setup times. Solution strategies
consist of a “lazy” default - simply let an industrial strength branch-and-
bound MIP solver try to find a good solution within a pre-specified amount
of time - to more sophisticated heuristic approaches. One of these that is
worth mentioning is a local search-based meta-heuristic which the author
called diminishing-neighborhood search (DNS). In this approach one starts the
method with the largest possible neighborhood to avoid bad local optima, and
then narrow the neighborhood in a continuously diminishing way as the search
proceeds towards a good solution, even if it is still a non-global optimum. The
methods were tested in real data instances with up to 41 distinct products
to be filled from 14 different liquids in a planning horizon made up of 13
consecutive weeks (periods). The final conclusion is that the methods present
a classical trade off between quality and CPU time with the best results being
obtained by DNS at the expense of 2 hours of computing time. In spite of the
interesting solution methods and results reported in [30], the approach will not
be included in the comparisons mainly due to the more restrictive character
of the production system for which it was developed.

Closing this introduction, one can conclude that the methods for dealing
with the SITLSP embedded in a soft drinks production planning scenario,
and most importantly with potential to be applied in real world situations

178 Ferreira et al.

in a broad sense, are the EA approaches as the one proposed in [23] and the
heuristic model-based method presented in [29]. Therefore, a computational
comparison involving these two approaches are conducted in a series of prac-
tical instances obtained from a large soft drinks manufacturer. One of the
purposes of the comparison is to suggest practical guidance on which method
best suits the different possible situations found in the industry. The other
sections are organized as follows. In Section 8.2 an MA approach based on
the GA developed in [23] is proposed while the methods introduced in [29] are
presented in Section 8.3. Section 8.4 shows the instances used in the compu-
tational comparisons and discussions on the test results. Finally, Section 8.5
concludes the chapter and discusses some topics for further research.

8.2 Evolutionary Approaches

In this section a memetic version of the GA presented in [23] is proposed to
solve the SITLSP . The term “Memetic Algorithms” [27,31] (MAs) was intro-
duced in the late 80s as a class of meta-heuristics that have the hybridization of
different algorithmic approaches as a crucial aspect in their conceptions. The
majority of the MA applications are population-based approaches in which a
set of cooperating and competing agents are engaged in periods of individual
improvement of the solutions while they sporadically interact. The adjective
‘memetic’ comes from the term ‘meme’, coined by Dawkins [32] as an analogy
to the term ‘gene’ in the context of cultural evolution. It stands for the unit
of information which reproduces itself as people exchange ideas. MAs are also
referred in the technical literature as hybrid genetic algorithms and usually
they take a less sophisticated conception as a combination of GAs with a local
search procedure applied to some of the individuals in the population.

8.2.1 The MA structure

EAs are global search procedures inspired by biological evolution processes
[24,25]. Amongst the EAs, the GAs are the most popular. A GA differs from
local search or constructive heuristics because it has an initial set of solutions
(individuals) which have been randomly established. Also called chromosomes,
these individuals are solution representations for the problem to be solved. At
each GA generation, the individual’s fitness is measured and genetic operators
are executed in the population. These operators are based on genetic behavior
such as crossover, mutation and selection. The individuals with better fitness
values remain in the population from one generation to another. MAs and GAs
have been applied to solve complex and real-world problems (see [33]- [35]).

The evolutionary methods presented in this section are conceived as a
multi-population approach with a hierarchical ternary tree structure. The
multi-population approach was chosen because populations that evolve sep-
arately usually have different characteristics according to the genetic drift

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 179

idea [36]. This can lead to a more effective exploration in the solution space
of the problem. A better performance of hierarchically structured popula-
tions over non-structured population schemes in EAs has been attested in
previous experiments concerning different problems (e.g. machine scheduling,
asymmetric travelling salesman, capacitor placement). Computational results
solving these optimization problems were reported by [18], [28] and [37] using a
multi-population GA with a hierarchical ternary tree structure. Furthermore,
the authors in [38] reported that the results obtained with the total tardiness
single machine scheduling problem using GA with hierarchically structured
populations are better than the ones with non-structured populations. These
findings have been confirmed by the multi-population MA developed to solve
the SITLSP. Moreover, the adoption of the multi-population approach has
enhanced the convergence features of the GA, postponing premature conver-
gence and improving its whole effectiveness [23].

Best Individual

Clusters

Leader

Supporters

Cluster

Fig. 8.6: MA clustered population.

The MA population structure consists of several clusters, each one having a
leader solution and three supporter solutions, as shown in Fig. 8.6. The leader
of a cluster is always fitter than its supporters. As a consequence, top clusters
tend on average to have fitter individuals than bottom clusters. As new indi-
viduals are constantly generated, replacing old ones, periodic adjustments are
necessary to keep this structure well ordered. The number of individuals in the
population is restricted to the numbers of nodes in a complete ternary tree, i.e.
(3k− 1)/2 where k is the number of levels of the tree. That is, 13 individuals
are necessary to construct a ternary tree with 3 levels, 40 to make one with 4
levels and so on. Previous experiments with distinct tree structures (binary,
ternary, etc.) and a variable number of levels (two, three, etc.) attested that
the best results were obtained by a 3-level ternary tree [6]. Observe that the
population is constituted by four distinct clusters, three in the bottom level
and one in the upper level, with four leaders, respectively. The upper level
leader (best individual) is always the fitter individual in the population.

180 Ferreira et al.

The MA procedure applied to the structured population is summarized in
Algorithm 8.1. The initial population Pop() is generated and submitted to a
generation loop. Operators recombinePop() and mutatePop() produce a new
individual (or more than one) which is improved by a local search algorithm in
optmizePop(). In structurePop() the population is re-structured to maintain
the hierarchy between agents.

Algorithm 8.1: The MA procedure.
initializePop();
repeat

recombinePop();
mutatePop();
optimizePop();
structurePop();

until Termination condition;

The operator recombinePop() performs a crossover over a cluster (selected
at random) and always involves a supporter node (selected at random) and
its corresponding leader node. The new individual (Child) is submitted to a
mutation procedure mutatePop() depending on the mutation probability test
result. The operator optimizePop() applies a local search to Child and if it is
now better than some parents, the Child will replace the parent with the worst
fitness value (Fig. 8.7). Otherwise, the new individual is not inserted into this
population. After every crossover/mutation/optimization/replacement oper-
ation, adjustments carried out by structurePop() are necessary to keep the
cluster structure well ordered where the best is always the leader (Fig. 8.8).

300

395900 400

375

570780 390

350

550800 730

120

110
300

395900 400

375

570780 390

350

800 730

120

110

Fig. 8.7: Population before and after Child insertion.

300

395900 400

375

570780 390350800 730

120

110
300

395900 400

375

570780 390350800 730

120

110

Fig. 8.8: Adjustments in the population.

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 181

8.2.2 The multi-population structure

Multi-population MAs are common in implementations in which computa-
tional tests are executed on parallel computers. Usually in such case, each
processor is responsible for one population. Results obtained on parallel
computers are in general much better than the ones obtained on sequential
machines. Even though the computational implementation and tests have been
carried out on a single-processor computer, the multi-population scheme has
been implemented to take advantage of the hierarchical population structure.
This decision is also supported by the fact that the SITLSP is a complex com-
binatorial problem for which simplistic evolutionary solution approaches tend
to fail. Fig. 8.9 shows how four populations interact. After a certain number of
executions of the genetic operators crossover and mutation performed in each
population, followed by a local search step applied to the best individual, one
can check if the population convergence occurred, i.e. if no new individuals
are inserted in it. If not, the process is repeated until convergence of all the
populations. In this case the migration step takes place with a copy of each
best individual being inserted into the next population and by replacing some
individual randomly selected - except the best one.

Fig. 8.9: Migration policy.

The pseudo-code shown in Algorithm 8.2 summarizes the whole multi-
population MA algorithm. The algorithm executes a fixed number of genera-
tions in each population while there is no convergence. This process involves
a parent selection (selectParents), a new individual creation by crossover
execution (crossover(individualA, individualB)), a possible mutation execu-
tion to the new individual (mutation(newInd)), its fitness evaluation (eval-
uateFitnessIndividual(newInd)) and its insertion or not into the population
(insertPopulation(newInd, pop(i))). The population convergence occurs when
there are no new individuals inserted after a fixed number of generations given
by the parameter γ ∗ PopSize, where γ is the crossover rate and PopSize is
the population size. A migration between populations (executeMigration) is

182 Ferreira et al.

executed when all populations have converged and the stop criterion has not
been satisfied yet. A new initialization of the populations (initializePopula-
tion(pop(i))) will occur, but the best individual and the migrated individuals
are kept. The stop criterion is usually a pre-specified computing time.

The MA described in this section was implemented using the NP-Opt
[28, 37], an object-oriented framework written in JAVA code which contains
procedures based on evolutionary computation techniques to address NP-hard
problems.

Algorithm 8.2: Pseudo-code for the multi-population memetic algo-
rithm.
repeat

for i=1 to numberOfPopulations do
initializePopulation(pop(i));
evaluatePopulationFitness(pop(i));
structurePopulation(pop(i));
repeat

for j=1 to numberOfGenerations do
selectParents(individualA,individualB);
newInd=crossover(individualA,individualB);
if execute mutation newInd then

newInd=mutation(newInd);
evaluateFitnessIndividual(newInd);
insertPopulation(newInd,pop(i));

end
structurePopulation(pop(i));
localSearch(pop(i));

end
until populationConvergence pop(i);

end
for i=1 to numberOfPopulations do

executeMigration(pop(i));
end

until stop criterion;

8.2.3 Individual representation

A MA approach was developed to solve a lot sizing and scheduling problem
with sequence-dependent setup times in [39], where an individual is repre-
sented by a string of paired values (type of product and lot size) for each
scheduling period. A similar representation of solution as an individual is pro-
posed by [40] for a GA used to solve the capacitated lot sizing and loading
problem with setup times, parallel facilities and overtime. In this approach,
the individual is also a string of paired values, where the first value is the
lot size and the second is the facility. A GA with more elaborated solution
representation is proposed by [41], where a binary matrix PxT (P products
and T periods) represents an individual for the multi-level lot sizing problem.

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 183

Each binary entry yi,t = 1, if a setup for product i occurs in t; otherwise
yi,t = 0. All the GA publications mentioned have specific genetic operators.
Their crossover, mutation and selection procedures were designed to deal with
those individual representations for lot size and scheduling problems.

A new solution representation is proposed in this work. It is close to one
presented in [42] that uses assignment rules in a multi-level proportional lot
sizing and scheduling problem with multiple machines. Fig. 8.10 introduces
the individual representation proposed for the SITLSP.

Individual

P / D
SL
STk

- - -

11 11

11

11

P / D
SL
STk

21 21

21

21

P / D
SL
STk

:
:

P / D
SL
STk

12 12

12

12

P / D
SL
STk

22 22

22

 22

P / D
SL
STk

:
:

P / D
SL
STk

1p 1p

1p

1p

P / D
SL
STk 2n

P / D
SL
STk

:
:

t

t 2

1

t T

 Tm

 T1 T1

 T1
 T1

 T2 T2

 T2

 T2

 Tm Tm

 Tm

columns
n

 rowsT

 2n 2n
 2n

Fig. 8.10: Individual for the SITLSP.

An individual is a two-dimensional matrix with T rows and N columns.
The number of rows represents the number of macro-periods t1, t2, . . . , tT .
The number of columns represents the number of genes and there can be a
different number of genes per macro-period. Each gene corresponds to a cell
(m,n), m ∈ T , n ∈ N , in the individual matrix and contains the following
data:

• Pmn: product in gene n to be produced in macro-period m.
• Dmn: lot size of product Pmn.
• SLmn: sequence of lines where Dmn can be produced.
• STkmn: sequence of tanks where the raw material of Dmn can be stored.

The demand dit of product i in micro-period t is divided into several lots
(Dmn) and randomly distributed among the genes in micro-periods t, t − 1,
t − 2, . . . , 1. The sequences SLmn and STkmn are randomly generated with
length k. Sequence SLmn=(α1, . . . , αk) with αi ∈ {1, . . . , L}, where αi is a
possible line number and L is the number of lines. The value αi is taken from L
possible values. Sequence STkmn=(β1, . . . , βk) with βi ∈ {1, 2, . . . , 2L}, where
βi defines where and how the raw material will be stored. Parameter L is the

184 Ferreira et al.

number of tanks. The βi is taken from 2L possible values, but the real tank
number j is obtained from βi using:

j =
{
βi, 1 ≤ βi ≤ L;
βi − L, L < βi ≤ 2L.

(8.1)

If 1 ≤ βi ≤ L, the tank j = i will be occupied after the raw material
previously stored has been used. This forces the method to find solutions
where there is a partial use of the tank capacity. If L < βi ≤ 2L, the tank
j = βi − L will be immediately occupied. This forces the method to find
solutions where the tank capacity is completely used. These conditions have
some exceptions. If tank j, selected by one of the previous criterions, stores
a raw material different from the raw material of the product Pmn, it will be
necessarily occupied after the raw material which was previously stored has
been used. The same will happen if tank j is completely full. On the other
hand, if tank j is empty, it will be immediately occupied. If j is not empty, but
the raw material stored is the same as Pmn and the minimum tank capacity has
not been satisfied, this tank will be also occupied immediately. The individuals
in each initial population are generated following the pseudo-code illustrated
in Algorithm 8.3. There are T macro-periods, J products, L lines and L tanks.
The variable Dem receives the total demand dPi,t of product Pi in the macro-
period t. This demand is randomly divided and distributed among the genes.
At this point, the sequences of lines (SLmn) and tanks (STkmn) are also
randomly generated.

Algorithm 8.3: Individual initialization algorithm.
for t = t1, t2, . . . , tT do

repeat
Select a product Pi ∈ {P1, P2, . . . , PJ} randomly with dPi,t > 0;
Set Dem=dPi,t;
while Dem > 0 do

Select the matrix row m ∈ {t1, t2, . . . , t} of the individual
randomly;
Determine n as the first gene available in line m of the
individual;
Determine Dm,n
= 0 with Dm,n ∈ [0, Dem] randomly
generated;
Insert Dm,n and Pi in the gene position (m,n) of the
individual;
Generate SLm,n = (α1, . . . , αk) with ai ∈ {1, . . . , L}
randomly selected;
Generate STkm,n = (β1, . . . , βk) with βi ∈ {1, . . . , 2L}
randomly selected;
Set Dem = Dem−Dm,n;

end
until All demands have been distributed among the genes;

end

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 185

The following example clarifies the solution representation of an individual.
Suppose two products (P1 and P2) where each product has a demand of 100
units to be filled in macro-period t1 and another 200 units to be filled in
macro-period t2. The products use different raw materials (Rm1 and Rm2,
respectively). Moreover, there are two lines available to produce both products
and two tanks available to store both raw materials. Fig. 8.11 shows two
possible representations, both based on the individual initialization algorithm.
The demands are distributed in their respective macro-periods in individual
1. However, the demand of P1 in t1 is split between two genes. The same
happens with the demand of P2 in t2. In individual 2, part of the P1 demand
in t2 is split between two genes in t1. Notice that the sequence of lines (SLmn)
and tanks (STkmn) can repeat values of αi ∈ {1, 2} and βi ∈ {1, 2, 3, 4} for
L = L = 2 and k = 4 (length).

P1
t 1 /50 P

1/100 P2 /50

P2 t 2 /100 P2 /100

Individual 1

2 1 2 2
3 3 2 4

1 1 2 1
4 3 1 2

2 1 1 1
3 1 2 3

2 2 1 2
3 1 4 4

2 1 1 2
1 2 4 2

P1 /200
1 1 2 2
4 2 3 4

P1
t 1 /50 P1 /100 P2/100

P2 t 2 /200P1/100

Individual 2

1 1 2 2
1 3 2 4

1 1 2 1
4 3 1 2

1 1 1 1
4 1 2 3

2 2 1 2
3 1 4 4

2 1 1 2
1 2 4 2

1P /50
1 1 1 1
4 1 2 3

Fig. 8.11: Two possible individuals.

8.2.4 Decoding and evaluation

The decoding procedure is responsible for determining a problem solution
from the data encoded in an individual. The procedure starts from the first
gene in the last macro-period up to the last gene in the first macro-period.
This backward procedure enable us to postpone setups and processing time of
products and raw materials in lines and tanks. However, there is no guarantee
that all demands will be produced at the end and a penalty in the fitness is
taken into account for that.

An example illustrates the decoding procedure. Consider the same data
used in the example of the last section and individual 1 shown there. Let’s
also suppose that for each macro-period there are 5 micro-periods with the
same length. Therefore, the time horizon is divided into 10 micro-periods. The
process begins by the first gene in the last macro-period (Fig. 8.12). A lot of
product P2 (D21 = 100) has to be produced using the first pair (α1, β1) =
(2, 3) from sequences SL21 and STk21. Product P2 is produced in line 2
because α1 = 2 and let’s assume that its processing time takes two micro-
periods. The other processing times used in this example are suppositions as

186 Ferreira et al.

well. According to equation (1), raw material Rm2 of P2 has to be stored
in tank j=3-2=1 because β1=3 and 2 < β1 < 4 with L = 2. Given the
criteria defined in Section 8.2.2, tank j=1 is empty and it must be occupied
immediately. A tank should be ready at least one micro-period before the
production starts on the lines. Therefore, the setup time of Rm2 occurs one
micro-period before the P2 production starts in L2 (see Fig. 8.12).

Tk2

Tk1

L2

L1
0 101 2 3 4 5 6 7 8 9 Time

1
P2 /100 2

3

P2

2
a =
b =

Rm2

2 2 1 2
3 1 4 4

P1
t 1 /50 P

1/100 P2 /50

P2 t 2 /100 P2 /100

Individual 1

2 1 2 2
3 3 2 4

1 1 2 1
4 3 1 2

2 1 1 1
3 1 2 3

2 2 1 2
3 1 4 4

2 1 1 2
1 2 4 2

P1 /200
1 1 2 2
4 2 3 4

Fig. 8.12: Decoding of the first gene in t2.

Let us suppose that the setup time of raw materials will take one micro-
period in any tank in this example. The demand of this gene has been
completely scheduled, so the next gene in t2 is decoded now (Fig. 8.13). The
first pair of rules (α1, β1) = (2, 1) is selected to schedule 100 units of P2
which are produced in L2 (α1 = 2). Value β1=1 means j = 1 (1 ≤ β1 ≤ 2) by
equation (1) and this tank must be occupied after the raw material which was
previously stored has been used. At this point, it is worth noticing that this
criterion allows for establishing schedules with a tank partially filled. Fig. 8.14
shows the decoding of the third gene in t2. A lot from product P1 (D21 = 200)
has to be scheduled in line L1 (α1 = 1) and its raw material has to be stored
in the empty tank j = 4-2 = 2 (2 < β1 ≤ 4). However, let’s suppose now
that tank j = 2 has a capacity of storing raw material sufficient to produce
only 100 units of P1. In this case, the next pair (α2, β2)=(1,2) is selected to
schedule the remaining lot D12 = 200-100 = 100 (Fig. 8.15). The remaining
lot is also produced in L1 (α2 = 1) and a new setup time of Rm1 occurs in
tank j = 2.

The decoding process continues in the first gene of t1 (Fig. 8.16). Product
P2 is produced in L2 (α1 = 2). A setup time occurs because P1 is produced
next in L1. Let’s suppose that the setup time from P1 to P2 takes one micro-
period. The tank j = 1 (β1=3 with 2 < β1 ≤4) should be immediately oc-
cupied, but it already stores Rm1. In this case, a new lot assignment to this
tank is necessary.

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 187

Tk2

Tk1

L2

L1
0 101 2 3 4 5 6 7 8 9 Time

1
P2 /100 2

1

P2

2
a =
b =

Rm2

2 1 1 2
1 2 4 2

P2

Rm2

Fig. 8.13: Decoding of the second
gene in t2.

Tk2

Tk1

L2

L1
0 101 2 3 4 5 6 7 8 9 Time

1 1
4

P2

2
a =
b =

Rm2
P2

Rm2

P1 /200
1 1 2 2
4 2 3 4

P1

Rm1

Fig. 8.14: Decoding of the third
gene in t2.

Tk2

Tk1

L2

L1
0 101 2 3 4 5 6 7 8 9 Time

1 1
2

P2

2
a =
b =

Rm2
P2

Rm2

P1 /100
1 1 2 2
4 2 3 4

P1

Rm1

P1

Rm1

Fig. 8.15: Decoding of the remaining demand of the third gene in t2.

The next gene decoding is shown in Fig. 8.17. Line L1 (α1 = 1) is selected
to produce D12 = 100 units of P2. Let’s suppose that the setup time from
P2 to P1 takes two micro-periods. Raw material Rm2 is assigned to j = 4-
2 = 2 (β1 = 4) and it must be ready one micro-period before L1 produces
P2. Fig. 8.18 has the last gene decoding. Product P1 is scheduled in L2
(α1 = 2) and there is no setup time because P1 is also produced next. Rm1
will integrate the lot previously stored in tank j = 3-2 = 1 because β1 = 3.
For this reason, the setup time of tank j = 1 is anticipated to the second
micro-period.

8.2.5 Crossover and mutation

Previous computational experiments with various crossover operators revealed
that the best behavior was attained by the uniform crossover. In this recom-
bination operator, genes from two different parents that occupy the same po-
sition in the individuals have some probability of being inherited by the child.
Individuals 1 and 2 (Fig. 8.11) are used to show how the uniform crossover

188 Ferreira et al.

Tk2

Tk1

L2

L1

0 101 2 3 4 5 6 7 8 9 Time

1
2
3

P2

2
a =
b =

Rm2

P2

Rm2

P1

Rm1

P1

Rm1

Rm1

P1

P /501

2 1 2 2
3 3 2 4

Fig. 8.16: Decoding of the second
gene in t2.

Tk2

Tk1

L2

L1

0 101 2 3 4 5 6 7 8 9 Time

1
1
4

P2

2
a =
b =

Rm2

P2

Rm2

P1

Rm1

P1

Rm1

Rm1

P1

P /1002

1 1 2 1
4 3 1 2

Rm2

P2

Fig. 8.17: Decoding of the third
gene in t2.

Tk2

Tk1

L2

L1

0 101 2 3 4 5 6 7 8 9 Time

1
2
1

P2

2
a =
b =

Rm2

P2

Rm2

P1

Rm1

P1

Rm1

Rm1

P1

Rm2

P2

1
P /50

2 1 1 1
3 1 2 3

Fig. 8.18: Decoding of the remaining demand of the third gene in t2.

operator works. Sequences SLmn and STkmn are not relevant because the
new individual (Child) will inherit these sequences without changes. Fig. 8.19
illustrates the crossover of Ind1 and Ind2.

P1 / 50 P2/ 100 P2 / 100 P1 / 50

P2 / 100

P1 2 P2 | 1 P2 2 P1

P / 100

P / 50 P1 / 100 P2 / 100 P1 / 50

2

P / 100 P /

P2 P2

P / 501 / 50

/ 100

1

/ 100

2

Ind1 Ind2

Child

t 1

t 2

t 1

t 2

t 1

t 2

/ 200P1

/ 200P1

P /1 / 200

1

Fig. 8.19: Uniform crossover example.

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 189

For each gene in the same position in Ind1 and Ind2, a random value
λ ∈ [0, 1] is generated. If λ < 0.5, the Child inherits the gene from Ind1;
otherwise, the Child inherits the gene from Ind2. The genes selected following
this procedure are shaded in Fig. 8.19. Notice that there are more genes in
macro-periods t1 of Ind2 than in the same macro-period of Ind1. In this case,
the procedure continues in Ind2 selecting those genes where λ ≥ 0.5. We do
not allow excessive demands in a new individual. For example, the gene from
Ind1 marked by a circle in Fig. 8.19 is not inherited because it would exceed
the total demand of P1 in the Child. If there is a gene in the same position
in Ind2, this gene must be inherited by the Child if the same problem does
not occur. On the other hand, a lack of demand can take place at the end of
the crossover. For this reason, a repair procedure is necessary and the demand
deficits in some macro-period are inserted.

Mutation aims to keep diversity in a population avoiding premature con-
vergence. A mutation rate determines the number of individuals that are
changed. The mutations adopted basically swap gene positions (Fig. 8.20).

 After mutation

Before mutation

Type 1

1 2 P2 | 1 P2 2 P1

P / 100

P / 100P2 / 100 P1 / 50

2

t 1

t 2 / 200P1

1P1/ 50

1 2 P2 | 1 P2 2 P1

P / 100

P / 100 P2 / 100 P1 / 50

2

t 1

t 2 / 200P1

1P1 / 50

 After mutation

Before mutation

Type 2

1 2 P2 | 1 P2 2 P1

P / 100

P / 100 P2 / 100 P1 / 50

2

t 1

t 2 / 200P1

1P1 / 50

1 2 P2 | 1 P1

P / 100

P / 100 P1 / 50

2

t 1

t 2 / 200P1

1P1 / 50

P2 2P2 / 100

 After mutation

Before mutation

Type 3

1 2 P2 | 1 P2 2 P1

P / 100

P / 100 P2 / 100 P1 / 50

2

t 1

t 2 / 200P1

1P1 / 50

1 2 P2 | 1 P2 2 P1

P / 100

P / 100 / 200 P1 / 50

2

t 1

t 2 / 100

P1 1P1 / 50

P2

Fig. 8.20: Mutation types.

The first type swaps the positions of two selected genes in the same macro-
period. In the second type, the selected gene is removed and inserted into
another position which is also randomly selected. The third type swaps the
positions of two chosen genes that are in different macro-periods. The new
gene positions have to respect the macro-period demand of each product. A
product swap will not take place if it can violate the demand satisfaction. The
mutation procedure randomly chooses which mutation type will be applied to
the individual.

8.2.6 Local search algorithm

A substantial part of the computational effort related to MA implementations
is due to the local search. Bearing this in mind, and also that SITLSP is a

190 Ferreira et al.

complex combinatorial problem to be solved in a real-world context, a simple
local search method is a natural choice. A threshold accepting (TA) proce-
dure was elected as the local search built-in method to be used in this MA
implementation [43]. The pseudo-code of the TA is shown in Algorithm 8.4.

The neighborhood movements can lead to worse individuals and the TA
accepts them, since their fitness value remain inside a threshold. Doing this
the method can skip from local minima. Threshold reductions lead the method
to convergence. Two neighborhood movements were carried out to modify the
best individual making changes in the gene positions and changes in the lot
size. The changes in the gene positions follow the same behavior of the three
types of mutations described in the previous section. Regarding the mutation
types, the allowed movements are:

• Swap positions of two genes in the same macro-period.
• Remove one gene and insert it into another position.
• Swap positions of two genes in different macro-periods.

The changes in the lot sizes consider two cases:

• Split lots of one gene in two pieces. One piece stays in the gene and the
other piece is inserted into another position of the individual.

• Merge lots of the same product. The lot of one gene is removed from its
original position and inserted into another gene with the same product.

Problems with demand satisfaction are taking into account, so neighbor-
hood movements that lead to infeasibility are forbidden. After the fixed num-
ber of generations has been completed, the MA takes the best individual of
the population and executes the TA local search. First, one of the three pos-
sible changes in the gene positions are randomly chosen and executed. After
a maximum number of iterations, the TA stops and restarts executing now
changes in the lot sizes. Moreover, the two possible changes in the lot sizes
are randomly chosen and executed over randomly selected genes. In the end,
if a better individual is obtained, it is inserted as the new best individual of
this population.

Algorithm 8.4: Local search procedure.
individual =bestIndividual;
repeat

newIndividual = moveExecution(individual);
∆f = fitness(Individual)-fitness(newIndividual);
if ∆f > −Th∗fitness(individual) then

individual = newIndividual;
else

reduce(Th);
end

until maxNumberOfIteration;

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 191

The MA as conceived here transforms itself into a GA simply by the delet-
ing the local search procedure. Although our experience with previous research
has demonstrated that in most cases the MA versions outperform their GA
versions, a comparison within a fixed amount of time will be carried out in
Section 8.4. The underlying issue under consideration is whether the time
spent by the local search executions in the MA is favorably used to reach
better solutions or if it could be used better by the GA version which will
spend this time executing a higher number of generations.

8.3 The Decomposition and Relaxation Approach

In this section the mathematical model to represent the SITLSP and the
solution approaches proposed in [29] are described. The model considers the
synchrony between the production levels and integrates the lot sizing and
scheduling decisions as well as the model in [19]. However, as pointed out in
Section 8.1.2, it differs from the latter in many aspects. A simplification of
the problem is considered supposing that each filling line, thereafter called
machine, has a dedicated tank. Each tank can be filled, in turn, with all the
liquids needed by the associated machine. The planning horizon is divided
into T macro-periods. It is a big bucket model and to obtain the order at
which the items will be produced each macro-period is divided into a number
of micro-periods. The total number of micro-periods is defined by the user,
but should be set as the maximum number of setups in each macro-period.
The micro-period size is flexible and is defined by the model since it depends
on the item’s lot size. The total number of micro-periods in both levels is the
same and only one item (liquid flavor) can be produced in each micro-period.

8.3.1 Model development

To describe the Two-Level Multi-Machine Lot Scheduling Model (P2LMM)
given in [29,44], let the following parameters define the problem size:

J = number of soft-drinks (items);
M = number of machines (and tanks);
F =number of liquid flavors;
T = number of macro-periods;
N = total number of micro-periods (i.e. total number of setups);

and let (i, j,m, k, l, t, s) be the index set defined as:

i, j ∈ {1 . . . J}; t ∈ {1 . . . T}; k, l ∈ {1 . . . F}; s ∈ {1 . . . N};m ∈ {1 . . .M}.
Consider also, that the following sets and data are known:

192 Ferreira et al.

Sets:

St = set of micro-periods in each macro-period t ;
Pt = first micro-period of period t ;
ρj = set of machines that can produce item j ;
δm = set of items that can be produced on machine m;
θm = set of liquid flavors that can be produced on tank m;
ωml = set of items that can be produced on machine m and need flavor l.

The data and variables described below with superscript I relate to Level
I (tank) and with superscript II relate to Level II (bottling):
Data:

djt = demand for item j in macro-period t;
hj = non-negative inventory cost for item j;
gj = non-negative backorder cost for item j;
sI

kl = changeover cost from liquid flavor k to l;

sII
ij = changeover cost from item i to j;

bIkl = changeover time from liquid flavor k to l;

bII
ij = changeover time from item i to j;

aII
mj = production time in machine m of item j;

KI
m = total capacity of tank m, in liters of liquid;

KII
mt = total time capacity in machine m in period t;

rjl = quantity of liquid flavor l necessary for the production of one lot of
item j;

qI
ls = minimum quantity to produce liquid flavor l in micro-period s;
I+
j0 = Initial inventory for item j.

Variables:

I+
jt = inventory for item j at the end of macro-period t ;

I−jt = backorder for item j at the end of macro-period t ;

xII
mjs = production quantity in machine m of item j in micro-period s;

yI
mls =

{
1, if the tank m is setup for syrup l in micro-period s;
0, otherwise

yII
mjs =

{
1, if the machine m is setup for item j in micro-period s
0, otherwise

zI
mkls =

{
1, if there is changeover in tank m from syrup k to l in s;
0, otherwise

zII
mijs =

{
1, if there is changeover in machine m from item i to j in s;
0, otherwise

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 193

To include the synchrony between the two production levels in the P2LMM
model another set of variables is necessary. As discussed in Section 8.1, a
machine must wait until the liquid is ready in the tank. The set of continuous
variables, vII

ms ≥ 0, computes this waiting time for each machine m, in each
micro-period s. The waiting time is equal to the difference between the tank
changeover time and the machine changeover time. That is:

vII
ms ≥

∑
k∈δm

∑
l∈θm

bIklz
I
mkls−

∑
i∈δm

∑
j∈δm

bII
ij z

II
mijs m = 1, . . . ,M, s = 1, . . . , N

If the machine changeover time from item i to j is greater than the tank
changeover time from liquid flavor k to l, the waiting variable is zero and
only the machine changeover time is considered in the associated capacity
constraint. Otherwise, the total waiting time of the macro-period is taken
into account.

The P2LMM model is then:

Min Z =
J∑

j=1

T∑
t=1

(hj I
+
jt + gj I

−
jt) +

M∑
m=1

N∑
s=1

∑
k∈θm

∑
l∈θm

sI
kl z

I
mkls

+
M∑

m=1

N∑
s=1

∑
i∈δm

∑
j∈δm

sII
ij z

II
mijs (8.2)

Subject To

Level I (Tank)∑
j∈ωml

rljx
II
mjs ≤ KI

m
yI

mls, m = 1, . . . ,M, l ∈ θm, s = 1, . . . , N ; (8.3)

∑
j∈ωml

rljx
II
mjs ≥ qI

lsy
I
mls, m = 1, . . . ,M, l ∈ θm, s = 1, . . . , N ; (8.4)

∑
l∈θm

yI
ml(s−1) ≥

∑
l∈θm

yI
mls, m = 1, . . . ,M, t = 1, . . . , T, s ∈ St − {Pt}; (8.5)

zI
mkls ≥ yI

mk(s−1)+y
I
mls−1, m = 1, . . . ,M, k, l ∈ θm, s = 2, . . . , N ;(8.6)

zI
mkls ≥ ∑

j∈ωml

yII
mj(s−1)+y

I
mls−1, m = 1, . . . ,M, k, l ∈ θm,

t = 2, . . . , (T − 1), s = Pt;
(8.7)

194 Ferreira et al.∑
k∈θm

∑
l∈θm

zI
mkls ≤ 1, m = 1, , . . . ,M, s = 1, . . . , N ; (8.8)

∑
k∈θm

zI
mkl1 ≥ yI

ml1, m = 1, . . . ,M, l ∈ θm ; (8.9)

Level II (bottling)

I+
j(t−1) + I−

jt
+

∑
m∈ρj

∑
s∈St

xII
mjs

= I+
jt

+ I−
j(t−1)

+ djt, j = 1, . . . , J,

t = 1, . . . , T
(8.10)

∑
j∈δm

∑
s∈St

aII
j x

II
mjs +

∑
i∈δm

∑
j∈δm

∑
s∈St

bII
ij z

II
mijs +

∑
s∈St

vII
ms ≤ KII

mt,

m = 1, . . . ,M, t = 1, . . . , T
(8.11)

v
II

ms ≥ ∑
k∈θm

∑
l∈θm

bIklz
I
mkls −

∑
i∈δm

∑
j∈δm

bII
ij z

II
mijs,

m = 1, . . . ,M, s = 1, . . . , N ;
(8.12)

xII
mjs ≤ KII

mt

aII
mj
yII

mjs, m = 1, . . . ,M,

j ∈ δm, t = 1, . . . , T, s ∈ St;
(8.13)

∑
j∈δm

yII
mjs = 1, m = 1, . . . ,M, s = 1, . . . , N ; (8.14)

zII
mijs ≥ yII

mi(s−1)+y
II
mjs−1, m = 1, . . . ,M, i, j ∈ δm,

s = 2, . . . , N
(8.15)

∑
i∈δm

∑
j∈δm

zII
mijs ≤ 1, m = 1, . . . ,M, s = 1, . . . , N ; (8.16)

∑
i∈δm

zII
mij1 ≥ yII

mj1, m = 1, . . . ,M, j ∈ δm; (8.17)

I+
jt, I

−
jt ≥ 0, j = 1, . . . , J, t = 1, . . . , T,

zI
mkls, vms, x

II
mjs, z

II
mijs ≥ 0, yI

mls, y
II
mjs ∈ {0, 1}

m = 1, . . . ,M, i, j ∈ δm, k, l ∈ θm, s = 1, . . . , N.

(8.18)

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 195

The objective function 8.2 is to minimize the total sum of inventory costs,
backorder costs, machine and tank changeover costs. In Level I, the demand
for liquid flavor l is computed in terms of the production variables. That is,
the demand for liquid l in each tank m in each micro-period s is given by and∑

j∈ωml
rljx

II
mjs. The constraints (8.3), similar to constraints (8.13) in Level II,

together with constraints (8.4) guarantees that if tankm is setup for syrup l in
micro-period s (yI

mls = 1) there will be production of liquid flavor l (between
the minimum quantity necessary for liquid homogeny and the tank maximum
capacity). The constraints (8.5) force the idle micro-periods to happen at the
end of the associated macro-period. Constraints (8.6), similar to constraints
(8.15) in Level II, control the liquid flavor changeover. Note that the tank
setup does not hold from one macro period to another if the setup variable in
the last micro-period is zero. Therefore, constraints (8.7) are needed to count
the changeover between macro-periods. Note also that the setup variables in
level II indicate which liquid flavor was prepared in the last non-idle micro-
period of each macro-period. Constraints (8.8), similar to constraints (8.16) in
Level II, count the first changeover of each tank. Constraints (8.9), similar to
constraints (8.17) in Level II, guarantee that there is at most one changeover
in each tank m in each micro-period s.

In Level II, constraints (8.10) represent the flow conservation constraints
for each item in each macro-period. Since the production variable is defined
for each micro-period, to obtain the total production of item j in a given
macro-period t it is necessary to sum the associated production variables over
all machines where it can be produced (m ∈ δj) and micro-periods (s ∈
St) of macro-period t. Constraints (8.11) represent the machine capacity in
each macro-period. Note here the inclusion of the waiting variable, vII

ms, to
ensure that the lot schedule will be feasible. The waiting time in machine m
in each micro-period s is computed by constraints (8.12) as explained above.
Constraints (8.13) guarantee that there is a production of item j only if the
associated setup variable is set to one, and constraints (8.14) and (8.15) count
the changeover in each machine m in each micro-period s. Constraints (8.14)
refer to a single mode production in each micro-period s. Note that production
may not occur although the machine is always ready to produce an item.

Finally, constraints (8.18) define the non-negativity and integrality restric-
tions. Note that the changeover variables zI

mkls and zII
mijs are continuous. Con-

straints (8.5), (8.6), (8.14), (8.15), and the optimization sense (minimization)
ensure that these variables will take only 0 or 1 values.

As happened to the model presented in [19], the solution of practical in-
stances of model P2LMM using the exact methods included in standard soft-
ware such as CPLEX [45] was not satisfactory. This indicated the need to
develop specific solution strategies.

196 Ferreira et al.

8.3.2 Relax and fix strategies

The relax and fix heuristic has been largely used as a method to obtain good
primal bounds (feasible solutions) for hard mixed-integer programs either on
its own or in hybrid algorithms e.g. [47]- [50]. In this approach, first the
integer variable set is partitioned into P disjunctive sets Qi, i = 1, . . . , P . At
iteration n, the variables of Qn are defined as integers while all others are
relaxed. The resulting problem is then solved. If it is infeasible, the procedure
finishes since it is not possible to find a feasible solution with the variables
in Qi, i = 1, . . . , n − 1 fixed at their actual values. Otherwise the variables
of Qn are fixed at their current values and the process is repeated for all the
P sets. Besides the variable set partition, criteria to fix the variables in set
Qn must also be defined before applying the procedure. The main feature
of this heuristic is the solution of submodels that are smaller, and possibly
easier, than the original one. The partition of variables and the criteria used
to fix the variables have a strong connection with the degree of the submodel
difficulty.

In the usual relax and fix strategy the variables are grouped by periods
(macro-periods) and only the integer variables are fixed at each iteration. In
[47] these criteria were used in the solution of a multi machine multi items lot
sizing model. The heuristics iterations number is thus the number of periods.
In [48] this heuristic is applied to a class of project scheduling problems and
explores various strategies to partition the set of binary variables. The relax
and fix heuristic has also been used in combination with meta-heuristics such
as Tabu Search. In [49] a hybrid tabu search procedure in which the relax
and fix heuristic is used either to initialize a solution or to complete partial
solutions is presented. The hybrid approach is applied to solve a big bucket lot
sizing problem with setup and backlog costs. At each iteration of the relax and
fix heuristic only the variables of a given period that concern a single product
is fixed. The strategy is called relax-and-fix-one-product. The main advantage
of this strategy is to solve smaller submodels since some mono-period, mono-
machine multi-items lot sizing problems are hard to solve. In [1] a relax and
fix heuristic to solve the SITLSP model formulated in [19] is proposed. The
criterion used is to first fix the binary variables in Level I, then the ones in
Level II, in a backward fashion. That is from the last period to the first. Other
relax and fix strategies also fix continuous variables. In [50] the relax and fix
heuristic is classified as a particular case of a progressive interval heuristics.
They also mention that fixing continuous variables reduce the flexibility of
the heuristic and propose various strategies varying the number of continuous
variables fixed.

The P2LMM model presents various possibilities to build sets Qi, i =
1, . . . , P [29]. The setup and changeover variables are indexed by levels, ma-
chines, items and periods. These indexes are explored when defining various
variable partition strategies. Different criteria were proposed to fix variables.
For example, after solving a submodel in a given iteration, it is possible to only

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 197

fix the binary variables associated to non-zero production variables. Table 8.1
shows 12 relax and fix strategies, divided into two groups. The Group 1 has
five strategies (G1.1 - G1.5) and the Group 2 has seven (G2.1 - G2.7). The
first column shows the strategy name (Strat.), the second and third columns
show the criteria used for the partition (Part.) and fixing (Fix) the variables,
respectively. The variables presented in Table 8.1 are the same ones used to
describe the model P2LMM, however some of its indexes were omitted.

Table 8.1: Relax and Fix Strategies.

Strat. Part. Fix

G1.1 Period yI , yII

G1.2 Period yI , zI , yII ,zII

G1.3 Period yI , zI , yII , zII , xII

G1.4 Period yI , zI , yII , zII i.th.p.*
G1.5 Period yI , zI , yII , zII

i.th.p. with reevaluation
G2.1 Machine/Period yI , yII

G2.2 Level I then Level II yI , yII

G2.3 Level II then Level I yI , yII

G2.4 Period/ Level I then Level II yI , yII

G2.5 Period/ Level II then Level I yI , yII

G2.6 Machine/Period/ Level II and yI , yII

Machine/Period/ Level I
G2.7 Machine/Period/ Level II and yI , zI , yII , zII

Machine/Period/ Level I i.th.p. with reevaluation

The first five strategies (G1.1 - G1.5) use the usual criteria of partitioning
the variables according to periods. They differ from each other by the criteria
used to fix the variables in a given iteration. These criteria are based on the
idea that the submodels should have a dimension that favors the decision
process. The objective was to evaluate the influence of the variables in the
submodels solution.

The Group 2 strategies explore the multi-machine, two level structure of
the model to partition the set of variables. The objective was to evaluate the
influence of each machine (level) in the solution of the submodels. Note that
the criterion used to fix the variables in this group is the same one used in the
strategy G1.1, except for the strategy G2.7. In this criterion, when the variable
yII is fixed to one, it only assures that the machine will be prepared, it does
not say if the item will be produced or not. The variable yI besides defining
that the tank will be prepared, also states that there will be production of
an item, between the tank capacities (constraints (2) and (3) in the P2LMM
model). In the strategy G2.7, besides the binary variables, the continuous

198 Ferreira et al.

variables (zI , zII) are also considered to be fixed when there is production
(xII > 0). In this strategy the idle micro-periods in previous iterations which
did not have any variables fixed are also reevaluated for further variable fixing.

At each iteration of the relax and fix heuristic an instance of a mixed
integer optimization submodel has to be solved. In general, they are solved by
exact methods included in standard software (e.g. the branch and cut method
in CPLEX). Although the submodels in each iteration are smaller than the
original model, they are still difficult. If the optimal solution of the submodel
solved at each iteration is not achieved in a pre-defined amount of time, the
branch and cut execution is halted and the best solution is used to fix the
variables.

8.3.3 The relaxation approach

In some industries the liquid preparation in Level I does not represent a bottle-
neck for the production process. That is, the tank capacities are large enough
to ensure that whenever a machine needs a liquid of a given flavor it will
be ready to be released. Therefore, there is no need to control either the
changeover in the tanks or the synchrony between the two production levels,
only the minimum tank capacity constraints to ensure the liquid homogeny
is necessary in Level I. This situation was explored as a solution approach
to model P2LMM. The Relaxation Approach (RA) is based on the idea that
once the production decision is taken in Level II, the decision for Level I is
easily taken.

In [44] a one level model to the production planning of a small soft drink
manufacturer that has only one machine and several tanks is presented. To
extend their model to the multi-machines case, only constraints (8.3), (8.4),
(8.10), (8.12)-(8.18) has to be considered, dropping the changeover variables
in Level I, zI

mkls, and adding the constraint:

∑
j∈δm

∑
s∈St

aII
j x

II
mjs +

∑
i∈δm

∑
j∈δm

∑
s∈St

bII
ij z

II
mijs ≤ KII

mt,

m = 1, . . . ,M, t = 1, . . . , T
(8.19)

The objective function is:

Min
J∑

j=1

T∑
t=1

(hj I
+
jt + gj I

−
jt) +

M∑
m=1

N∑
s=1

∑
i∈δm

∑
j∈δm

sII
ij z

II
mijs (8.20)

These sets of constraints and the objective function 8.20 define a one level
multi-machines lot scheduling (P1LMM) model. It can be used in the first
phase of the RA algorithm (described below) to define the lot sizing and
scheduling of items in Level II. An adjustment of the solution of this model

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 199

might be necessary to take into account the synchrony between the two lev-
els. This can be obtained by model P2LMM with the setup variables fixed
according to the solution of model P1LMM. That is, if item j is produced
then the tank and the machine must be setup. This procedure is outlined in
Algorithm 8.5, where σj is the liquid flavor necessary to produce item j.

Algorithm 8.5: The RA Algorithm.
Step 1 Solve the P1LMM model;
Step 2 if P1LMM is feasible then

for m=1 to M; j ∈ δm,s = 1, . . . , N do
if xII

mjs > 0 then
Fix the setup variables of P2LMM model according
to;
for j ∈ δm, l ∈ σj do

yII
mjs = 1 and yI

mls = 1
end

end
end

end
Step 3 Solve the P2LMM model obtained in Step 2.

The relax and fix strategies presented in Section 8.3.2 can also be used
to solve the models in Steps 1 and 3 of Algorithm RA. Note however that in
model P1LMM in Level I only the capacities constraints are considered and
there are no changeover variables associated to this level. Therefore the relax
and fix strategies described in Table 8.1 have to be modified accordingly. If the
models in Algorithm RA are solved by standard software and their optimal
solution are not achieved in a pre-defined amount of time, the branch and cut
execution is also halted and the best solution is considered. Other solution
approaches for SITLSP are presented and tested in [44] and [51].

8.4 Computational Tests

In this section we present and analyze the computational results of the evolu-
tionary algorithms (MA and GA) described in Section 8.2, and the decomposi-
tion and relaxation approaches described in Section 8.3, when applied to solve
industrial instances of SITLSP. Among all approaches reported in Section 8.3,
we present the results of only P2LMM G2.7 (relax-and fix strategy G2.7 ap-
plied to model P2LMM) and RA G2.1 (relax-and-fix strategy G2.1 applied
to the model P1LMM of Algorithm RA), since they were the ones that pro-
duced the best solutions for this set of instances tested. Other computational
tests with randomly generated examples of small-to-moderate and moderate-
to-large sizes and other industrial instances were performed with the MA and
the GA approaches presented in Section 8.2. The P2EMM G2.7, RA G2.1
and the other approaches of Section 8.3 are as well tested in other examples.
Their results are reported in [23] and [29], respectively.

200 Ferreira et al.

8.4.1 Generation of instances

The solution methods presented in Sections 8.2 and 8.3 can be easily adapted
to represent the particularities of different soft drinks companies. To follow, we
describe next the necessary adjustments to represent the situation encountered
at a Brazilian soft drink manufacturer, Plant A, as well as the data used to
generate the instances used in the computational tests described in Section
8.4.2.

Plant A produces many types of soft drinks (items) characterized by the
liquid flavor and bottle type. It has various tanks and filling lines (machines)
with different capacities. Some tanks (machines) are dedicated to produce
only a given subset of flavors (items), whereas others can produce any one.
There is a single liquid flavor (l = 4) whose demand is by far superior to the
others. While most of the liquid flavors have demands around 20,000 units
per period, flavor 4 has demand around 150,000 units. It also has a high setup
time and cost. Therefore, in Plant A there is a tank which is fully dedicated
to continuously produce flavor 4. That is, whenever a machine is ready to
produce an item that uses this flavor, the tank is also ready to release it.

To represent this situation in model P2LMM of Section 8.3, the changeover
time in Level I from any flavor k to flavor 4 and from flavor 4 to any other is
set to zero (bIk4 = bI4k = 0). Similar adjustments are made in the evolutionary
algorithms of Section 8.2. Although there is no need to setup the tanks for
flavor 4, there is still a need to setup the machines when items that need this
flavor are produced. However, the tank setup variable, yI

m4s cannot be set
to zero, since when this is done, constraints (8.3) together with (8.4) impose
that the production of any item that uses this flavor is zero (if yI

m4s = 0 then
xII

mjs = 0, for j ∈ ωm4). Therefore the tank capacity (constraints (8.3) and
(8.4)) for l = 4 is dropped.

When defining the lot size and schedule, Plant A also considers that the
inventory in a given period must be enough to cover the demand in the next
period. To have a fair comparison between the model and the company solu-
tions, a new set of constraints should be included in the model:

I+
jt = dj(t+1), j = 1, . . . , J ; t = 2, . . . , T + 1; (8.21)

Two minor modifications were made in the MA and GA to ensure that their
solutions are comparable to the solutions of P2LMM G2.7 and RA G2.1, as
well as the solutions used by Plant A. The first change refers to the assumption
that each filling line has a dedicated tank, that is, there is only one tank
allocated to only one line. Therefore, the criterion of the MA/GA for selecting
a tank, instead of determined by (Section 8.2):

j =
{
βi, 1 ≤ βi ≤ L;
βi − L, L < βi ≤ 2L.

(8.22)

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 201

It was re-defined as: j = βi, where βi = αi. In addition, the fitness func-
tion of the MA/GA was modified to include only the product inventory, prod-
uct changeover and demand shortage costs. As the company primarily favors
production schedules with no demand shortages, the shortage unit cost was
considered as a sufficiently large penalization so as to avoid shortages in the
solutions. In cases whereby the MA and GA were unable to find a schedule
without shortages, their solution was simply considered infeasible. The same
was considered with the solutions of approaches P2LMM G2.7 and RA G2.1.
We refer to these modified versions of MA and GA as MA1 and GA1, respec-
tively.

The second change in the MA/GA is the consideration of penalization costs
over the liquid flavor inventories maintained in the tanks from one period to
another. In other words, besides the costs taken into account in the fitness
function of the MA1 and GA1, we also considered penalization costs to avoid
holding liquid flavor inventories between consecutive periods. This is because
the company prefers production schedules that do not hold liquid inventories
from one period to other, because they are perishable. Recall from Section 8.3
that approaches P2LMM G2.7 and RA G2.1 do not hold liquid inventories.
We refer to these modified versions of the MA and GA as MA2 and GA2,
respectively.

Several visits to Plant A were made in order to understand its production
processes and to collect the data necessary to simulate their SITLSP. Data
associated to demands, changeover times in both levels, tank and machine
capacities, etc., were obtained during these visits. The details of the collected
data are presented in [29, 51]. The data was used to generate 15 instances of
the SITLSP.

The first instance (P1) was generated based on data related to two ma-
chines that can produce items in common. The first one (machine 1) can
produce 23 items and the second one (machine 2) only 10 out of these. That
is, there are 13 items that can be produced on any one of these two machines.
Eighteen different flavors are necessary to produce this set of items.

Three weeks were considered in the planning horizon. Machine 1 was avail-
able for four working days per week (total of 5,760 minutes per week) and ma-
chine 2 six working days (total of 8,640 minutes per week). It was estimated
that the tank could have up to five changeovers per day. Taking the average
of the number machine working days (5 days), it is possible to have up to 25
changeovers per week. Therefore, the P1 instance has three macro-periods (3
weeks) with a total of 75 micro-periods (25 per macro-period). The production
scheduling for this instance was provided by Plant A, making the comparison
with the strategies proposed in Sections 8.2 and 8.3 possible.

To simulate different scenarios, four other instances (P2-P5) were gener-
ated by modifying part of the data used in instance P1. The inventory costs
were doubled (P2), the changeover costs halved (P3), the total demand was
redistributed among the periods (P4), and the machines capacities were re-
duced (P5). These modifications are detailed in Table 8.2.

202 Ferreira et al.

Demand data related to a period of 30 weeks was also available. This data
allowed the generation of another group of 10 instances (P6-P15). Each one
of these instances is associated to three consecutive weeks. Instances P6, P7,
P14 and P15 are associated to periods of higher demands when compared to
P8-P13. Except for the demands, all the other parameters used to generate
these instances were the same ones used to generate instance P1. More details
of the procedure used to generate the instances can be found in [29,51].

Table 8.2: Modifications in instance P1 to generate P2-P5.

Instances Modification

P1 Plant A data
P2 Inventory costs of P1 doubled
P3 Inventory costs of P1 doubled and the changeover costs of P1 halved.
P4 The total demand of P1 was randomly redistributed among the periods.
P5 The machines capacities were reduced

8.4.2 Computational results

The experiments described in this section ran on a microcomputer Pentium
IV with 1 GB Ram and 2.8 GHz. The approaches P2LMM G2.7 and RA G2.1
were implemented using the modelling language AMPL [52] and the optimiza-
tion solver CPLEX 10.0 [45] with default parameters, while the MA and the
GA were implemented using the NP-Opt [28,37], an object-oriented framework
written in JAVA code which contains procedures based on evolutionary com-
putation techniques to address NP-hard problems. An execution time limit
of 4 hours was established to solve each example by each method. The MA
and the GA were applied three times to each example and the best solution
obtained was chosen. In order to satisfy the total time limit of 4 hours, a limit
of 4800 seconds was also imposed to each MA or GA run. It should be men-
tioned that the 4-hour limit is acceptable to support the decisions involved in
the production scheduling of the company.

The MA and GA have been adjusted with 3 populations structured in
ternary trees of 13 individuals each, which means a total of 39 individuals. The
crossover rate ρ was set to 1.5 leading the methods to execute 19 crossovers
over each population. The mutation rate was fixed at 0.7 where a γ value is
randomly chosen in [0, 1] with uniform distribution. The mutation operator
is executed on the new individual, if γ < 0.7. All these values are based on
previous tests which are reported in [1].

Table 8.3 presents the total cost values (in thousands of monetary units)
of the solutions obtained by the MA1, GA1, MA2 and GA2, in comparison
with the solutions of P2LMM G2.7 and RA G2.1, for the instances P1-P15. As

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 203

mentioned, for each example, the values of the memetic and genetic algorithms
correspond to the lowest cost solution found among the three executions of
the algorithm. Note that the values of the table correspond only to inventory
and changeover costs, since there are no demand shortages. The symbol “inf.”
in the table indicates that the method was unable to find a feasible solution
(i.e., a solution without demand shortages) within the time limit. The best
solution value of each example is highlighted in bold.

Table 8.3: Solution values of methods P2LMM G2.7, RA G2.1, MA1, GA1, MA2
and GA2 for instances P1-P15.

Ex. P2LMM G2.7 RA G2.1 MA1 GA1 MA2 GA2

P1 399.3 322.3 256.8 285.6 244.6 271.4
P2 509.6 325.9 306.7 280.3 287.5 268.4
P3 270.3 212.9 146.6 148 141.8 158.8
P4 480,3 330.5 217.6 221.5 214.4 208.1
P5 inf. inf. inf. inf. inf. inf.
P6 inf. inf. inf. inf. inf. inf.
P7 inf. inf. inf. inf. inf. inf.
P8 inf. 529 inf. inf. inf. inf.
P9 560.9 261.7 inf. 372.5 348.7 391.6
P10 744.4 266.2 303.9 317.1 358.3 375.4
P11 461.6 294 inf. inf. inf. inf.
P12 inf. 344.8 inf. inf. inf. inf.
P13 inf. 358.5 405.7 422.4 393 483.6
P14 inf. inf. inf. inf. inf. inf.
P15 inf. inf. inf. inf. inf. inf.

“inf.” - No feasible solution found within the time limit

As discussed in Section 8.4.1, instance P1 is the only one of the problem set
for which we are aware of the corresponding production schedule used by Plant
A. This company solution meets all product demands with no delays, yielding
a total cost of 422.7 in thousands of monetary units. Comparing this solution
to the ones presented in Table 8.3, we notice that all methods P2LMM G.7,
RA G2.1, MA1, GA1, MA2 and GA2 were able to find better solutions than
the company, with relative cost reductions of 5.5%, 23.8%, 39.2%, 32.4%,
42.1% and 35.8%, respectively. This indicates that these approaches have a
potential to generate competitive solutions - note that the cost reductions
can be significant. Moreover, it can be observed that the memetic versions
outperformed the genetic ones.

In instances P1 and P2-P4 (which are based on instance P1), the solu-
tions obtained by MA1, GA1, MA2 and GA2 are better than the ones ob-
tained by P2LMM G.7 and RA G2.1 (Table 8.3). For these instances, the
P2LMM model involved in approach P2LMM G.7 has 86,359 variables (4,575

204 Ferreira et al.

binary variables) and 86,140 constraints, while the P1LMM model in approach
RA G2.1 has 54,559 variables (4,575 binary variables) and 49,544 constraints.
Some performance variations between the MA1 and MA2 (and between the
GA1 and GA2) are due to the randomly generated initial populations of the
algorithms. In particular, we do not know if instance P5 is feasible (from
the point of view of demand shortages), since none of the methods found a
solution without shortages. This instance was generated using the same data
as P1, except for the reduction in the machine capacities (Table 8.2).

The remaining instances P6-P15 refer to collected data of the product de-
mands for different months, provided by Plant A. Since we do not have the
production schedules used by the company for these examples, we are not
aware if they are feasible from the point of view of the demand shortages.
In these examples, approach RA G2.1 produced better solutions than MA1,
GA1, MA2 and GA2. Moreover, for all instances P1-P15, the RA G2.1 solu-
tions dominate the ones of P2LMM G.7 (Table 8.3). As well as for instance
P5, we do not know if instances P6, P7, P14 and P15 are feasible, since none
of the methods found a solution without shortages. The minimum capacity
necessary to produce all the items in these instances is higher than in the
others. However, it is worth mentioning that by using realistic backlogging or
lost sales unit costs (instead of large penalties) in these methods, they can be
employed to generate effective schedules balancing the trade-offs between the
inventory, changeover and shortage costs.

Table 8.4 resumes the relative deviations of the solution values of MA1,
GA1, MA2 and GA2 regarding approach RA G2.1. These deviations were
calculated using the expression:Dev(%) = 100(z−z)/z, where z is the solution
value of MA1 (or GA1, MA2, GA2) and z is the value found by approach
RA G2.1. Note that the deviations of the evolutionary algorithms with respect
to RA G2.1 are relatively large, varying from -37.0% to 49.6%. The superiority
of the memetic approach over its genetic version is also corroborated by these
results.

Given that the methods were unable to find a solution with no demand
shortages for instances P5, P6, P7, P14 and P15, we roughly approximate
the backlogging unit costs as the profit contributions of the products and
we applied the methods again to solve the examples using these parame-
ters as the shortage unit costs. Table 8.5 presents the modified total cost
values (in thousands of monetary units) of these experiments - note that,
unlike Table 8.3, these values correspond to inventory, changeover and short-
age costs. The best solution found for each example alternates between the
methods RA G2.1, MA1, GA1 and MA2, and these methods do not dominate
each other. Table 8.6 depicts the relative deviations of the evolutionary ap-
proaches with respect to method RA G2.1 for the examples with demand
shortages.

Considering the results in Tables 8.3 and 8.5, we note that MA1 (or
MA2) outperforms GA1 (or GA2) in 8 out of the 12 examples for which

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 205

Table 8.4: Relative deviations of the solution values of MA1, GA1, MA2 and GA2
with respect to approach RA G2.1.

Ex. MA1 GA1 MA2 GA2

P1 -20.3 -11.4 -24.1 -15.8
P2 -5.9 -14 -11.8 -17.6
P3 -31.1 -30.5 -33.4 -25.4
P4 -34.1 -33 -35.1 -37
P8 *** *** *** ***
P9 *** 42.3 33.2 49.6
P10 14.2 19.1 34.6 41
P11 *** *** *** ***
P12 *** *** *** ***
P13 13.1 17.8 9.6 34.9

*** The deviation was not computed because the approaches MA1,
GA1, MA2 or GA2 did not find a feasible solution within the time limit

Table 8.5: Modified solution values of methods P2LMM G2.7, RA G2.1, MA1, GA1,
MA2 and GA2 with demand shortages.

Ex. P2LMM G2.7 RA G2.1 MA1 GA1 MA2 GA2

P5 603.7 379.5 371.7 422.2 485.7 393.7
P6 663.9 526.5 565.4 492.8 527 567.1
P7 591.5 509.5 370.4 398.1 372.8 413.9
P14 588.5 449.5 357.6 343.3 310.4 378.5
P15 671.3 446.2 476.6 541.1 555.4 491.2

Table 8.6: Relative deviations of the solution values of MA1, GA1, MA2 and GA2
with respect to approach RA G2.1 (infeasible examples).

Ex. MA1 GA1 MA2 GA2

P5 -2 11.2 27.9 3.7
P6 7.3 -6.4 0.1 7.7
P7 -27.3 -21.9 -26.8 -18.8
P14 -20.4 -23.6 -30.9 -15.8
P15 6.8 21.3 24.5 10.1

these algorithms found a feasible solution, indicating a better performance of
MA over GA in these instances. A similar result was observed in the other
instances randomly generated and tested in [1]. Moreover, comparing MA2
and RA G2.1, we note that MA2 outperforms RA G2.1 in 6 examples and
RA G2.1 outperforms MA2 in 9 examples, showing that these methods are

206 Ferreira et al.

competitive. The GA2 and MA2 approaches provide a better solution in sce-
narios where the total capacity is loose and the RA G2.1 in scenarios where
the total capacity is tight.

It is worth remarking that, for all instances P1-P15, the gap between
the best feasible solutions of model P2LMM (found within the time limit)
and its linear relaxation solution is over 90%, which does not provide much
information about the optimality gap of the solutions in Tables 8.3 and 8.5.

8.5 Final Remarks and Conclusions

In this chapter we study a two-level production planning problem involving, on
each level, a lot sizing and scheduling problem with parallel machines, capac-
ity constraints and sequence-dependent setup costs and times. The problem
is referred to as the Synchronized and Integrated Two-Level Lot sizing and
Scheduling Problem (SITLSP) and it can be found in some industrial settings,
as, for example, in soft drink companies where the production process involves
two interdependent levels with decisions concerning raw material storage and
soft drink bottling.

A mixed integer programming model for the SITLSP was introduced in
[19], integrating and synchronizing the two lot sizing and scheduling problems
involved. This model can be useful when dealing with small-to-moderate size
instances, however, as the problem size grows, the number of distinct integer
solutions increases exponentially, causing the branch-and-bound search to take
too long, even for finding the first integer feasible solution.

In order to overcome these limitations, and deal with larger and more re-
alistic problem instances, a genetic algorithm with a particular representation
of solutions for individuals and a hierarchically structured multi-population is
proposed in [23]. In Section 8.2 the genetic approach is extended by a memetic
algorithm version. A tailor-made decoding procedure is used to evaluate the
solution encoded in the gene of each individual. Moreover, a tailor-made re-
combination over population clusters takes place and migrations among differ-
ent populations are allowed. The memetic approach is capable of generating
competitive solutions if compared with the ones utilized in practice, as shown
in Section 8.4.

As an alternative for these meta-heuristic approaches, another solution
method capable of dealing with realistic problem instances of the SITLSP is
presented (Section 8.3). Unlike the highly general and complex MIP model
in [19], a simplified MIP formulation, in the sense that it forces the number of
tanks to be the same as the filling lines so that each line has a dedicated tank,
is described. The solution approach of the simplified model relies on different
relax-and-fix heuristics and model decomposition strategies.

The performances of the memetic algorithm-MA (as well as its genetic
version- GA) and the decomposition/relaxation approaches (P2LMM G2.7
and RA G2.1) are evaluated solving a set of instances based on actual data

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 207

provided by a Brazilian soft drink company. All approaches are capable of
producing competitive solutions when compared to the production schedule
used by the company, requiring affordable computational runtime. In some
cases the cost savings of the solutions are substantial (Section 8.4). Comparing
the relative performances of the approaches when solving this problem set, it is
observed that the MA outperforms the GA and that the MA and the RA G2.1
do not dominate each other. In particular, the MA provides a better solution
in scenarios where the total capacity is loose and the RA G2.1 in scenarios
where the total capacity is tight.

Topics for future research include new experiments with the methods stud-
ied in this chapter involving real instances to be obtained from other soft
drinks plants. The evolutionary approaches can be improved by introducing
new genetic operators, especially other crossovers not tested yet and other
more powerful local search-based algorithms such as Simulated Annealing or
Tabu Search. The introduction of valid inequalities is a research topic to be
attempted to improve the decomposition/relaxation approaches.

As point out in the Introduction, the main purpose of this chapter was
bring to the attention of the academic community and also to the industrial
engineering practitioners the state-of-the art of computer-aided tools used to
generate effective production schedules in the soft drink industry. Focusing the
SITLSP, a hard combinatorial optimization problem, we believe that the most
important conclusions that can be extracted from the studied methods as well
as from the computational assessment performed in this chapter are two-fold:
first, mathematical modelling provides deeper insight into a very complex
industrial planning problem, and, second, tailor-made optimization methods
can yield less costly and more effective production schedules in reasonable
computing times when compared with the ones provided by general purpose
commercial packages commonly used by the industry.

Acknowledgements

We are indebted to Flávio Veronese and Aldo Fernandes Júnior from Com-
panhia de Bebidas Ipiranga, Brazil for their kind collaboration. This research
was partially supported by grants from FAPESP and CNPq.

References

1. Toledo C. F. M. (2005) The integrated two-stage lot sizing and scheduling
problem, Doctoral Thesis (in Portuguese), State University of Campinas, Brazil

2. Drexl A., Kimms A. (1997) Lot sizing and scheduling - survey and extensions,
European Journal of Operational Research 99: 221-235.

3. Bitran G. R., Yanasse H.H. (1982) Computational complexity of the capacited
lot size problem, Management Science 28(10): 1174-1186.

208 Ferreira et al.

4. Clark A. R., Clark S. J. (2000) Rolling-horizon lot sizing when set-up times
are sequence-dependent, International Journal of Production Research 38(10):
2287-2307.

5. Fleischmann B. (1994) The discrete lot sizing and scheduling problem with
sequence-dependent setup costs, European Journal of Operational Research,
75: 395-404.

6. Gupta D., Magnusson T. (2005) The capacitated lot sizing and scheduling prob-
lem with sequence-dependent setup costs and setup times, Computers & Op-
erations Research 32: 727-747.

7. Haase K., Kimms A. (2000) Lot sizing and scheduling with sequence dependent
setup costs and times and efficient rescheduling opportunities, International
Journal of Production Economics 66: 159-169.

8. Meyr H. (2000) Simultaneous lot sizing and scheduling by combining local
search with dual reoptimization, European Journal of Operational Research120:
311-326.

9. Berreta R. E., França P. M., Armentano V. (2005) Meta-heuristic approaches
for the multilevel resource-constrained lot sizing problem with setup and lead
times, Asia-Pacific Journal of Operational Research 22(2): 261-286.

10. França P. M., Armentano V., Berretta R. E., Clark, A. R. (1997) A heuristic
method for lot sizing in multi-stage systems, Computers & Operations Research
24 (9): 861-874.

11. Kimms A. (1997) Demand shuffle - A method for multi-level proportional lot
sizing and scheduling, Naval Research Logistics 44: 319-340.

12. Kimms A. (1997) Multi-level lot sizing and scheduling - Methods for capaci-
tated, dynamic, and deterministic models, Physica, Heidelberg.

13. Özdamar L., Barbarosoglu G. (2000) An integrated lagragean relaxation-
simulated annealing approach to the multi-level multi-item capacitated lot siz-
ing problem, International Journal of Production Economics 68: 319-331.

14. Kang S., Malik K., Thomas L. J. (1999) Lot sizing and scheduling on par-
allel machines with sequence-dependent setup costs, Management Science 45:
273-289.

15. Kuhn H., Quadt, D. (2002) Lot sizing and scheduling in semiconductor as-
sembly - A hierarchical planning approach. In: Mackulak G. T., Fowler J. W.,
Schömig A. (eds), Proceedings of the International Conference on Modeling
and Analysis of Semiconductor Manufacturing, Tempe, USA: 211-216.

16. Meyr H. (2002) Simultaneous lot sizing and scheduling on parallel machines,
European Journal of Operational Research 139: 277-292.

17. Quadt D., Kuhn H. (2003) Production planning in semiconductor assembly,
Working Paper, Catholic University of Eichstätt-Ingolstadt.

18. Stadtler H. (2003) Multilevel lot sizing with setup times and multiple con-
strained resources: internally rolling schedules with lot sizing windows 51(3):
487-502.

19. Toledo C.F.M., Kimms A., França P.M, Morabito R.(2006) A mathematical
model for the synchronized and integrated two-level lot sizing and scheduling
problem, Journal of Operational Research Society: under review.

20. Bitran G. R., Matsuo H. (1986) Approximation formulations for the single
product capacitated lot size problem, Operations Research 34: 63-74.

21. Fleischmann B., Meyr, H. (1997) The general lot sizing and scheduling problem,
OR Spektrum 19: 11-21.

8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 209

22. Drexl A., Haase K. (1997) Proportional lotsizing and scheduling, International
Journal of Production Economics 40: 73-87.

23. Toledo C. F. M., França P. M., Morabito R., Kimms A. (2007) A multi-
population genetic algorithm to solve the synchronized and integrated two-
level lot sizing and scheduling problem, International Journal of Production
Research: in press.

24. Holland J. H. (1975) Adaptation in natural and artificial systems, The Univer-
sity of Michigan Press.

25. Goldberg D. E. (1989) Genetic algorithms in search, optimization, and machine
learning, Addison Wesley.

26. Michalewicz Z. (1996) Genetic Algorithms + data structure = evolution pro-
grams, Springer-Verlag.

27. Moscato P. (1989) On evolution, search, optimization, genetic algorithms, and
martial arts: towards memetic algorithms, Technical Report, Caltech Concur-
rent Computation Program, C3P Report 826.

28. Mendes A. S. (2003) The framework NP-Opt and its applications to optimiza-
tion problems, Doctoral Thesis (in Portuguese), State University of Campinas
- Brazil.

29. Ferreira D., Rangel S., Morabito R. (2007) Solution approaches for the soft
drink integrated lot sizing and scheduling problem, European Journal of Oper-
ational Research (under review).

30. Clark A. R. (2003) Hybrid heuristics for planning lot setups and sizes, Com-
puters & Industrial Engineering 45: 545-562.

31. Moscato P. (1989) On genetic crossover operators for relative order preserva-
tion. C3P Report 778, California Institute of Technology, Pasadena, CA 91125.

32. Dawkins R. (1976) The selfish gene. Oxford University Press Oxford.
33. Gen M., Cheng R. (1997) Genetic algorithms & engineering design. John Wiley

& Sons New York NY.
34. Goldberg D.E. (2002) The design of innovation: lessons from and for competent

genetic algorithms. Addison-Wesley Reading, MA.
35. Hart W. E., Krasnogor N., Smith J.E. (Eds.) (2005) Recent advances in

memetic algorithms series: studies in fuzziness and soft computing 166.
36. Weiner J. (1995) The beak of the finch. Vintage Books New York.
37. Mendes A. S., França P. M., Moscato P. (2001) NP-Opt: an optimization frame-

work for NP problems. Proceedings of POM2001: 82-89 Guarujá, Brazil.
38. França P. M., Mendes A. S., Moscato P. (2001) A memetic algorithm for the

total tardiness single machine scheduling problem. European Journal of Oper-
ational Research 1(132): 224-242.

39. Sikora R. (1996) A genetic algorithm for integrating lot sizing and sequencing in
scheduling a capacitated flow line. Computers & Industrial Engineering 30(4):
969-981.

40. Özdamar L., Birbil S. I. (1998) Hybrid heuristic for the capacitated lot sizing
and loading problem with setup times and overtime decisions. European Journal
of Operational Research 110: 525-547.

41. Dellaert N., Jeunet J., Jonard N. (2000) A genetic algorithm to solve the general
multi-level lot sizing problem with time-varying costs. International Journal of
Production Economics 68: 241-257.

42. Kimms A. (1999) A genetic algorithm for multi-level, multi-machine lot sizing
and scheduling. Computers & Operations Research 26: 829-848.

210 Ferreira et al.

43. Dueck G., Scheuer T. (1990) Threshold accepting: A general purpose optimiza-
tion algorithm appearing superior to simulated annealing. Journal of Compu-
tational Physics 90: 161-175.

44. Ferreira D., Morabito R., Rangel S. (2007) A MIP model and relax and fix
heuristics for production planning and scheduling in a small soft drink plant
(in Portuguese), Produção (São Paulo): in press.

45. ILOG (2001) Using the CPLEX Callable Library, Copyright, ILOG.
46. Wolsey L. A. (1998) Integer Programming, John Wiley & Sons.
47. Dillemberger C., Escudero L. F., Wu Zhang A. W. (1994) On practical resource

allocation for production planning and scheduling with period overlapping se-
tups, European Journal of Operational Research 75: 275-286.

48. Escudero L. F., Salmeron J. (2005) On a fix-and-relax framework for a class of
project scheduling problems, Annals of Operations Research 140: 163-188.

49. Pedroso J. P., Kubo M. (2005) Hybrid tabu search for lot sizing problems,
in Hybrid Meta-heuristics, Lecture Notes in Computer Science 3636: 66-77,
Springer, Berlin.

50. Federgruen A., Meissner J., Tzur M. (2007) Progressive interval heuristics
for multi-item capacitated lot sizing problems, Operations Research, 55 (3):
490-502.

51. Ferreira D. (2006) Approaches to the integrated problem of the lot sizing and
scheduling of the soft drink production, Doctoral Thesis (in Portuguese), Fed-
eral University of São Carlos, Brazil.

52. Fourer R., Gay M. D., Kernighan B. W. (1993) AMPL - A modeling language
for mathematical programming, The Scientific Press, Danvers, Massachusetts.

