Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 750))

  • 1541 Accesses

Abstract

In the previous chapter we studied two space–times containing black holes. First we inspected the advanced Eddington–Finkelstein space–time and second the Oppenheimer–Snyder space–time. This background now allows us to define a black hole in a more rigorous way than before (cf. p. 223)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, UK, 1973.

    Book  MATH  Google Scholar 

  2. M. Heusler, Black Hole Uniqueness Theorems, Cambridge University Press, Cambridge, UK 1996.

    Book  MATH  Google Scholar 

  3. E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence, J. Math. Phys. 6 (1865) 918.

    Google Scholar 

  4. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, Freeman, San Francisco, CA, 1973.

    Google Scholar 

  5. B. Carter, Commun. Math. Phys. 10 (1968) 280.

    Google Scholar 

  6. J. H. Krolik, Active Galactic Nuclei, Princeton University Press, Princeton, NJ, 1999.

    Google Scholar 

  7. K. S. Thorne, R. H. Price and D. A. Macdonald, (eds.) Black Holes: The Membrane Paradigm, Yale University Press, New Haven, CT, 1986.

    Google Scholar 

  8. S. Chandrasekhar, The Mathematical Theory of Black Holes, Clarendon Press, Oxford, 1983.

    MATH  Google Scholar 

  9. R. Penrose, Nuovo Cim. 1, special number (1968) 252.

    Google Scholar 

  10. J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31 (1973) 161.

    Google Scholar 

  11. S. W. Hawking, Phys. Rev. Lett. 26 (1971) 1344.

    Google Scholar 

  12. S. W. Hawking, Commun. Math. Phys. 43 (1975) 199; R. M. Wald, Quantum Field Theory in Curved Spacetimes and Black Hole Thermodynamics, The University of Chicago Press, Chicago, IL, 1994.

    Google Scholar 

  13. J. Frank, A. King and D. Raine, Accretion Power in Astrophysics, Cambridge University Press, Cambridge, UK, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hájíček .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hájíček, P. (2008). Stationary Black Holes. In: An Introduction to the Relativistic Theory of Gravitation. Lecture Notes in Physics, vol 750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78659-7_7

Download citation

Publish with us

Policies and ethics