Skip to main content

Current State of Accommodation Research

  • Chapter
  • 1216 Accesses

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

By “accommodation” is understood the change of the eye's optical power to facilitate focusing on objects at different distances. Hermann von Helmholtz whose description of the accommodative mechanism from the year 1855 is still valid in all major parts wrote in his Handbook of Physio logical Optics: “There is no other portion of physiological optics where one finds so many differing and contradic tory ideas as concerns the accommodation of the eye where only recently in the most recent time have we actually made observations where previously everything was left to the play of hypotheses [1]”. Even nowadays, the mechanism of accommodation and the cause of presbyopia are a matter of controversial discussion, and a general consensus compris ing all the elements has not yet been reached.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helmholtz von HH, Southall JPC (1911) Handbuch der Physiologischen Optik. The Optical Society of America, Menasha, Wisconsin

    Google Scholar 

  2. Tamm ER, L◻tjen-Drecoll E (1996) Ciliary body. Microsc Res Tech 33:390

    Article  PubMed  CAS  Google Scholar 

  3. Rohen JW (1979) Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes. Invest Ophthalmol Vis Sci 18:133

    PubMed  CAS  Google Scholar 

  4. Glasser A, Croft MA, Brumback L, et al (2001) Ultrasound biomicroscopy of the aging rhesus monkey ciliary region. Optometr Vis Sci 78:417

    Article  CAS  Google Scholar 

  5. Glasser A, Campbell MC (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vision Res

    Google Scholar 

  6. Bernal A, Parel JM, Manns F (2006) Evidence for posterior zonular fiber attachment on the anterior hyaloid mem brane. Invest Ophthalmol Vis Sci 47:4708–471

    Article  PubMed  Google Scholar 

  7. Atchison DA, Smith G (2002) Optics of the human eye. Butterworth-Heinemann, Oxford

    Google Scholar 

  8. Fincham EF (1925) The changes in the form of the crystal line lens in accommodation. Trans Opt Soc 26:240

    Google Scholar 

  9. Taylor VL, al-Ghoul KJ, Lane C W, et al (1996) Morphol ogy of the normal human lens. Invest Ophthalmol Vis Sci 37:1396

    PubMed  CAS  Google Scholar 

  10. von Helmholtz H (1855) Über die Accommodation des Auges. Graefes Arch Ophthalmol 1(Abst II):1–74

    Article  Google Scholar 

  11. Lütjen-Drecoll E, Tamm E, Kaufman PL (1988) Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. Arch Ophthalmol 106:1591–1598

    PubMed  Google Scholar 

  12. Fincham EF (1937) The mechanism of accommodation. Br J Ophthalmol Monogr 8:7–76

    Google Scholar 

  13. Coleman DJ (1970) Unified model for accommodative mechanism. Am J Ophthalmol 69:1063

    PubMed  CAS  Google Scholar 

  14. Duane A (1925) Are the current theories of accommodation correct? Am J Ophthalmol 8:196

    Google Scholar 

  15. Strenk SA, Strenk LM, Koretz JF (2005) The mechanism of presbyopia. Prog Retin Eye Res 24:379

    Article  PubMed  Google Scholar 

  16. Coleman DJ (1986) On the hydraulic suspension theory of accommodation. Trans Am Ophthalmol Soc 84:846–868

    PubMed  CAS  Google Scholar 

  17. Koretz JF, Handelman GH (1982) Model of the accommodative mechanism in the human eye. Vision Res 22:917

    Article  PubMed  CAS  Google Scholar 

  18. Tscherning M (1899) The theory of accommodation. Ophthalmic Rev 18:91

    Google Scholar 

  19. Coleman DJ, Fish SK (2001) Presbyopia, accommodation, and the mature catenary. Ophthalmology 108:1544

    Article  PubMed  CAS  Google Scholar 

  20. Fisher RF (1982) The vitreous and lens in accommodation. Trans Ophthalmol Soc U K 102:318

    PubMed  Google Scholar 

  21. Fisher RF (1983) Is the vitreous necessary for accommodation in man? Br J Ophthalmol 67:206

    Article  PubMed  CAS  Google Scholar 

  22. Albrecht M, Eisner G (1982) The hyalo-capsular zonula. Graefes Arch Clin Exp Ophthalmol 218:88–92

    Article  PubMed  CAS  Google Scholar 

  23. Schachar RA, Black TD, Kash RL, et al (1995) The mechanism of accommodation and presbyopia in the primate. Ann Ophthalmol 27:58

    Google Scholar 

  24. Croft MA, Glasser A, Heatley G, et al (2006) The zonula, lens, and circumlental space in the normal iridectomized rhesus monkey eye. Invest Ophthalmol Vis Sci 47:1087–1095

    Article  PubMed  Google Scholar 

  25. Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106:863–872

    Article  PubMed  CAS  Google Scholar 

  26. Kotulak JC, Morse SE (1995) The effect of perceived distance on accommodation under binocular steady-state conditions. Vision Res 35:791

    Article  PubMed  CAS  Google Scholar 

  27. Shapiro JA, Kelly JE, Howland HC (2005) Accommodative state of young adults using reading spectacles. Vision Res 45:233

    Article  PubMed  Google Scholar 

  28. Stark LR, Atchison DA (1994) Subject instructions and methods of target presentation in accommodation research. Invest Ophthalmol Vis Sci 35:528

    PubMed  CAS  Google Scholar 

  29. Takeda T, Hashimoto K, Hiruma N, et al (1999) Characteristics of accommodation toward apparent depth. Vision Res 39:2087

    Article  PubMed  CAS  Google Scholar 

  30. Quinlan DJ, Culham JC (2007) fMRI reveals a preference for near viewing in the human parieto-occipital cortex. Neuroimage 36:167–187

    Article  PubMed  CAS  Google Scholar 

  31. Kaufman PL, Rohen J W, Gabelt BT, et al (1991) Parasym-pathetic denervation of the ciliary muscle following pan-retinal photocoagulation. Curr Eye Res 10:437–455

    Article  PubMed  CAS  Google Scholar 

  32. Kasthurirangan S, Glasser A (2005) Characteristics of pupil responses during far-to-near and near-to-far accommodation. Ophthalmic Physiol Opt 25:328

    Article  PubMed  Google Scholar 

  33. Mallen EA, Gilmartin B, Wolffsohn JS (2005) Sympathetic innervation of ciliary muscle and oculomotor function in emmetropic and myopic young adults. Vision Res 45:1641

    Article  PubMed  Google Scholar 

  34. Nanavaty MA, Vasavada AR, Patel AS, et al (2006) Analysis of patients with good uncorrected distance and near vision after monofocal intraocular lens implantation. J Cataract Refract Surg 32:1091–1097

    Article  PubMed  Google Scholar 

  35. Ostrin LA, Glasser A (2004) Accommodation measurements in a prepresbyopic and presbyopic population. J Cataract Refract Surg 30:1435

    Article  PubMed  Google Scholar 

  36. Duane A (1912) Normal values of the accommodation at all ages. J Am Med Assoc 59:1010–1012

    Google Scholar 

  37. Gullstrand A, Southall JPC (1909) The mechanism of accommodation. In: Helmholtz's treatise on physiological optics. Dover, New York, p 382

    Google Scholar 

  38. Glasser A, Campbell MC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res 39:1991–2015

    Article  PubMed  CAS  Google Scholar 

  39. Heys KR, Cram SL, Truscott RJ (2004) Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis 10:956–963

    PubMed  Google Scholar 

  40. Weeber HA, Eckert G, Soergel F, et al (2005) Dynamic mechanical properties of human lenses. Exp Eye Res 80:425–434

    Article  PubMed  CAS  Google Scholar 

  41. Weeber HA, Eckert G, Pechhold W, et al (2007) Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol 245:1357–1366

    Article  PubMed  Google Scholar 

  42. Weeber HA, van der Heijde RG (2007) On the relationship between lens stiffness and accommodative amplitude. Exp Eye Res 85:602–607

    Article  PubMed  CAS  Google Scholar 

  43. McGinty SJ, Truscott RJ (2006) Presbyopia: the first stage of nuclear cataract? Ophthalmic Res 38:137

    Article  PubMed  CAS  Google Scholar 

  44. Bito LZ, Miranda OC (1989) Accommodation and Presbyopia. Ophthalmol Annu 21:103

    Google Scholar 

  45. Cook CA, Koretz JF, Pfahnl A, et al (1994) Aging of the human crystalline lens and anterior segment. Vision Res 34(22):2945

    Article  PubMed  CAS  Google Scholar 

  46. Farnsworth PN, Shyne SE (1979) Anterior zonular shifts with age. Exp Eye Res 28:291

    Article  PubMed  CAS  Google Scholar 

  47. Koretz JF, Handelman GH (1988) How the human eye focuses. Sci Am 259:92

    Article  PubMed  CAS  Google Scholar 

  48. Pierscionek B, Weale RA (1995) Presbyopia – a maverick of human aging. Arch Gerontol Geriatr 20:229

    Article  PubMed  CAS  Google Scholar 

  49. Fisher RF (1969) Elastic constants of the human lens capsule. J Physiol 201:1

    PubMed  CAS  Google Scholar 

  50. Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 38:357

    PubMed  CAS  Google Scholar 

  51. Ziebarth NM, Borja D, Arrieta E, Aly M, Manns F, Dortonne I, Nankivil D, Jain R, Parel JM (2008) Role of the lens capsule on the mechanical accommodative response in a lens stretcher. Invest Ophthalmol Vis Sci 49:4490–4496.

    Article  PubMed  Google Scholar 

  52. Croft MA, McDonald J P, James RJ, et al (2008) Surgical intervention and accommodative responses: I. Centripetal ciliary body, capsule and lens movement in rhesus monkeys of varying age. Invest Ophthalmol Vis Sci

    Google Scholar 

  53. Tamm E, Croft MA, Jungkunz W, et al (1992) Age-related loss of ciliary muscle mobility in the rhesus monkey. Role of the choroid. Arch Ophthalmol 110:871–876

    CAS  Google Scholar 

  54. Lütjen-Drecoll E, Tamm E, Kaufman PL (1988) Age changes in rhesus monkey ciliary muscle: light and electron microscopy. Exp Eye Res 47:885

    Article  PubMed  Google Scholar 

  55. Gabelt BT, Kaufman PL, Polansky JR (1990) Ciliary muscle muscarinic binding sites, choline acetyltransferase, and acetylcholinesterase in aging rhesus monkeys. Invest Oph-thalmol Vis Sci 31:2431

    CAS  Google Scholar 

  56. Poyer JF, Kaufman PL, Flugel C (1993) Age does not affect contractile responses of the isolated rhesus monkey ciliary muscle to muscarinic agonists. Curr Eye Res 12:413

    Article  PubMed  CAS  Google Scholar 

  57. Fisher RF (1973) Presbyopia and the changes with age in the human crystalline lens. J Physiol 228:765–779

    PubMed  CAS  Google Scholar 

  58. Strenk SA, Semmlow JL, Strenk LM, et al (1999) Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 40:1162

    PubMed  CAS  Google Scholar 

  59. Tamm S, Tamm E, Rohen JW (1992) Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev 62:209–221

    Article  CAS  Google Scholar 

  60. Tamm E, Lütjen-Drecoll E, Jungkunz W, et al (1991) Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 32:1678–1692

    PubMed  CAS  Google Scholar 

  61. Koretz JF, Cook CA, Kuszak JR (1994) The zones of discontinuity in the human lens: development and distribution with age. Vision Res 34:2955

    Article  PubMed  CAS  Google Scholar 

  62. Atchison DA (1995) Accommodation and presbyopia. Ophthalmic Physiol Opt 15:255

    Article  PubMed  CAS  Google Scholar 

  63. Weale RA (1999) On potential causes of presbyopia [letter]. Vision Res 39:1263

    Article  PubMed  CAS  Google Scholar 

  64. Crampton P (1813) The description of an organ by which the eyes of birds are accommodated to the different distances of objects. Thompson's Ann Phil 1:170

    Google Scholar 

  65. Müller H (1857) Über den Accommodations-Apparat im Auge der Vögel, besonders der Falken. Archiv für Ophthal-mologie 3:25–55

    Google Scholar 

  66. Glasser A, Guthoff R, Ludwig K (2003) How other species accommodate. In: Current aspects of human accommodation II. Kaden Verlag, Heidelberg, p 13

    Google Scholar 

  67. Bito LZ, Kaufman PL, DeRousseau CJ, et al (1987) Presbyopia: an animal model and experimental approaches for the study of the mechanism of accommodation and ocular ageing. Eye 1:222–230

    PubMed  Google Scholar 

  68. Glasser A, Wendt M, Ostrin L (2006) Accommodative changes in lens diameter in rhesus monkeys. Invest Oph-thalmol Vis Sci 47:278

    Article  Google Scholar 

  69. Vilupuru AS, Glasser A (2005) The relationship between refractive and biometric changes during Edinger-Westphal stimulated accommodation in rhesus monkeys. Exp Eye Res 80:349–360

    Article  PubMed  CAS  Google Scholar 

  70. Baumeister M, Wendt M, Glasser A (2008) Edinger-West-phal stimulated accommodative dynamics in anesthetized, middle-aged rhesus monkeys. Exp Eye Res 86:25–33

    Article  PubMed  CAS  Google Scholar 

  71. Vilupuru AS, Glasser A (2002) Dynamic accommodation in rhesus monkeys. Vision Res 42:125–141

    Article  PubMed  Google Scholar 

  72. Kohnen T, Derhartunian V (2007) [Apodized diffractive optic. New concept in multifocal lens technology]. Ophthalmologe 104:899–904, 906–897

    PubMed  CAS  Google Scholar 

  73. Leyland M, Pringle E (2006) Multifocal versus monofo-cal intraocular lenses after cataract extraction. Cochrane Database Syst Rev:CD003169

    Google Scholar 

  74. Schmidinger G, Geitzenauer W, Hahsle B, et al (2006) Depth of focus in eyes with diffractive bifocal and refractive multifocal intraocular lenses. J Cataract Refract Surg 32:1650–1656

    Article  PubMed  Google Scholar 

  75. Schachar RA (1992) Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol 24:445

    PubMed  CAS  Google Scholar 

  76. Croft MA, Glasser A, Heatley G, et al (2006) Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye. Invest Ophthalmol Vis Sci 47:1076–1086

    Article  PubMed  Google Scholar 

  77. Strenk SA, Strenk LM, Semmlow JL, et al (2004) Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area. Invest Ophthalmol Vis Sci 45:539

    Article  PubMed  Google Scholar 

  78. Wendt M, Croft MA, McDonald J, et al (2008) Lens diameter and thickness as a function of age and pharmacologically stimulated accommodation in rhesus monkeys. Exp Eye Res 86:746–752

    Article  PubMed  CAS  Google Scholar 

  79. Malecaze FJ, Gazagne CS, Tarroux MC, et al (2001) Scleral expansion bands for presbyopia. Ophthalmology 108:2165

    Article  PubMed  CAS  Google Scholar 

  80. Ostrin LA, Kasthurirangan S, Glasser A (2004) Evaluation of a satisfied bilateral scleral expansion band patient. J Cataract Refract Surg 30:1445

    Article  PubMed  Google Scholar 

  81. Cumming JS, Colvard DM, Dell SJ, et al (2006) Clinical evaluation of the Crystalens AT-45 accommodating intraocular lens: results of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg 32:812–825

    Google Scholar 

  82. Macsai MS, Padnick-Silver L, Fontes BM (2006) Visual outcomes after accommodating intraocular lens implantation. J Cataract Refract Surg 32:628–633

    Article  PubMed  Google Scholar 

  83. Findl O, Leydolt C (2007) Meta-analysis of accommodating intraocular lenses. J Cataract Refract Surg 33:522–527

    Article  PubMed  Google Scholar 

  84. Koeppl C, Findl O, Menapace R, et al (2005) Pilocarpine-induced shift of an accommodating intraocular lens: AT-45 Crystalens. J Cataract Refract Surg 31:1290

    Article  PubMed  Google Scholar 

  85. McLeod SD (2006) Optical principles, biomechanics, and initial clinical performance of a dual-optic accommodating intraocular lens (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:437–452

    PubMed  Google Scholar 

  86. Menapace R, Findl O, Kriechbaum K, et al (2007) Accommodating intraocular lenses: a critical review of present and future concepts. Graefes Arch Clin Exp Ophthalmol 245:473–489

    Article  PubMed  CAS  Google Scholar 

  87. Ripken T, Oberheide U, Fromm M, et al (2007) fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefes Arch Clin Exp Ophthalmol 246:897–906

    Article  PubMed  Google Scholar 

  88. Koopmans SA, Terwee T, Glasser A, et al (2006) Accommodative lens refilling in rhesus monkeys. Invest Ophthalmol Vis Sci 47:2976–2984

    Article  PubMed  Google Scholar 

  89. Hunter JJ, Campbell MC (2006) Potential effect on the retinoscopic reflex of scleral expansion surgery for presbyopia. Optometr Vis Sci 83:649

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumeister, M., Kohnen, T. (2009). Current State of Accommodation Research. In: Kohnen, T., Koch, D.D. (eds) Cataract and Refractive Surgery. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76380-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76380-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76378-9

  • Online ISBN: 978-3-540-76380-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics