Skip to main content

How Should We Manipulate Higher-Order Aberrations After Refractive Surgery?

  • Chapter
Cataract and Refractive Surgery

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 1200 Accesses

Higher-Order Aberrations, and Higher-Order Aberration Correction Can Induce Spherical Refractive Error (Aberration Interaction)

Based on the plethora of reports in the literature, refrac tive surgical procedures often reduce spherical and cylin drical (lower-order) aberrations but have a tendency to induce higher-order aberrations (HOA) in a variety of refractive surgeries. APPLEGATE and coworkers were the first to describe the induction of corneal HOA after radial keratotomy (RK) and their interference in visual performance [1, 2]. Subsequently, data were published for photorefractive keratectomy (PRK) [3, 4], laser in situ keratomileusis (LASIK) [5, 6], wavefront-guided LASIK [7], and phakic intraoclular lenses (pIOL) [8, 9]. Often the pattern of HOA induction is similar for many procedures: the treatment results in a change of refrac tion over a defined central area of the cornea (the opti cal zone, OZ) which itself leads to a more or less high discrepancy between the center and the periphery. The use of relatively small optical zones in refractive surgery and the use of spherical implants in cataract surgery typi cally induces spherical aberration (SA). In corneal laser surgery, the higher the attempted effect and the smaller the programmed OZ and the larger the pupil, the higher is the SA induction [6, 10]. It has been shown that, even if the programmed OZ equaled the pupil diameter (PD), SA was induced [11–13]. The reason for the inherent SA induction has been discussed controversially: some authors favor physical reasons such as loss of energy in the periphery of the cornea [14, 15], while others deem the biomechanical response of the cornea causal [16–18]. Myopic treatments induce positive SA, while hyperopic treatments expectedly induce negative SA [19, 20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate RA, Gansel KA (1990) The importance of pupil size in optical quality measurements following radial kera totomy. Refract Corneal Surg 6(1):47–54

    PubMed  CAS  Google Scholar 

  2. Applegate RA, Hilmantel G, Howland HC (1996) Corneal aberrations increase with the magnitude of radial keratot omy refractive correction. Optom Vis Sci 73(9):585–589

    Article  PubMed  CAS  Google Scholar 

  3. Martinez CE, Applegate RA, Klyce SD, et al (1998) Effect of pupillary dilation on corneal optical aberrations after photore-fractive keratectomy. Arch Ophthalmol 116(8):1053–1062

    PubMed  CAS  Google Scholar 

  4. Seiler T, Kaemmerer M, Mierdel P, Krinke HE (2000) Ocu lar optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 118(1):17–21

    PubMed  CAS  Google Scholar 

  5. Oshika T, Klyce SD, Applegate RA, et al (1999) Compari son of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Oph-thalmol 127(1):1–7

    Article  CAS  Google Scholar 

  6. Moreno-Barriuso E, Lloves JM, Marcos S, et al (2001) Ocu lar aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci 42(6):1396–1403

    Google Scholar 

  7. Kohnen T, Bühren J, Kühne C, Mirshahi A (2004) Wave-front-guided LASIK with the Zyoptix 3.1 system for the cor rection of myopia and compound myopic astigmatism with 1-Year follow-up: clinical outcome and change in higher order aberrations. Ophthalmology 111(12):2175–2185

    Article  PubMed  Google Scholar 

  8. Bühren J, Kasper T, Terzi E, Kohnen T (2004) Higher order aberrations after implantation of an iris claw pIOL (Ophtec Artisan) in the phakic eye. Ophthalmologe 101(12):1194–1201

    Article  PubMed  Google Scholar 

  9. Tahzib NG, Bootsma SJ, Eggink FA, Nuijts RM (2006) Functional outcome and patient satisfaction after Artisan phakic intraocular lens implantation for the correction of myopia. Am J Ophthalmol 142(1):31–39

    Article  PubMed  Google Scholar 

  10. Bühren J, Kohnen T (2006) Factors affecting the change in lower-order and higher-order aberrations after wavefront-guided laser in situ keratomileusis for myopia with the Zyoptix 3.1 system. J Cataract Refract Surg 32(7):1166–1174

    Article  PubMed  Google Scholar 

  11. Boxer Wachler BS, Huynh VN, El-Shiaty AF, Goldberg D (2002) Evaluation of corneal functional optical zone after laser in situ keratomileusis. J Cataract Refract Surg 28(6):948–953

    Article  Google Scholar 

  12. Holladay JT, Janes JA (2002) Topographic changes in cor neal asphericity and effective optical zone after laser in situ keratomileusis. J Cataract Refract Surg 28(6):942–947

    Article  PubMed  Google Scholar 

  13. Bühren J, Kühne C, Kohnen T (2005) Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK. J Cataract Refract Surg 31(12):2272–2280

    Article  PubMed  Google Scholar 

  14. Dorronsoro C, Cano D, Merayo-Lloves J, Marcos S (2006) Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape. Optics Express 14(13):6142–6156

    Article  Google Scholar 

  15. Freedman KA, Brown SA, Mathews SM, Young RSL (2003) Pupil size and the ablation zone in laser refractive sur gery: Considerations based on geometric optics. J Cataract Refract Surg 19(10):1924–1931

    Article  Google Scholar 

  16. Nagy LJ, MacRae S, Yoon G, et al (2007) Photorefractive keratectomy in the cat eye: Biological and optical outcomes. J Cataract Refract Surg 33(6):1051–1064

    Article  PubMed  Google Scholar 

  17. Roberts C (2000) The cornea is not a piece of plastic. J Refract Surg 16(4):407–413

    PubMed  CAS  Google Scholar 

  18. Yoon G, MacRae S, Williams DR, Cox IG (2005) Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg 31(1):127–135

    Article  PubMed  Google Scholar 

  19. Kohnen T, Mahmoud K, Bühren J (2005) Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology 112(10):1692

    Article  PubMed  Google Scholar 

  20. Llorente L, Barbero S, Merayo J, Marcos S (2004) Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Refract Surg 20(3):203–216

    PubMed  Google Scholar 

  21. Oshika T, Miyata K, Tokunaga T, et al (2002) Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis. Ophthalmology 109(6):1154–1158

    Article  PubMed  Google Scholar 

  22. Porter J, Yoon G, Lozano D, et al (2006) Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations. J Cataract Refract Surg 32(1):21–32

    Article  PubMed  Google Scholar 

  23. Porter J, Yoon G, MacRae S, et al (2005) Surgeon offsets and dynamic eye movements in laser refractive surgery. J Cataract Refract Surg 31(11):2058–2066

    Article  PubMed  Google Scholar 

  24. Bühren J, Yoon G, Kenner S, et al (2007) The effect of opti cal zone decentration on lower- and higher-order aber rations after photorefractive keratectomy in a cat model. Invest Ophthalmol Vis Sci 48(12):5806–5814

    Article  PubMed  Google Scholar 

  25. MacRae S (1999) Excimer ablation design and elliptical transition zones. J Cataract Refract Surg 25:1191–1197

    Article  PubMed  CAS  Google Scholar 

  26. Pallikaris I, Kymionis G, Panagopoulou S, et al (2002) Induced optical aberrations following formation of a laser in situ keratomileusis flap. J Cataract Refract Surg 28:1737–1741

    Article  PubMed  Google Scholar 

  27. Porter J, MacRae S, Yoon G, et al (2003) Separate effects of the microkeratome incision and laser ablation on the eye's wave aberration. Am J Ophthalmol 136(2):327–337

    Article  PubMed  Google Scholar 

  28. Durrie DS, Stahl JE, Schwendeman F (2005) Alcon LADAR-Wave customcornea retreatments. J Refract Surg 21(6): S804–S807

    PubMed  Google Scholar 

  29. Schwartz GS, Park DH, Lane SS (2005) CustomCornea wavefront retreatment after conventional laser in situ keratomileusis. J Cataract Refract Surg 31(8):1502–1505

    Article  PubMed  Google Scholar 

  30. Subbaram M V, MacRae S, Slade SG, Durrie DS (2006) Customized LASIK treatment for myopia: relationship between preoperative higher order aberrations and refrac tive outcome. J Refract Surg 22(8):746–753

    PubMed  Google Scholar 

  31. Subbaram MV, MacRae SM (2007) Customized LASIK treatment for myopia based on preoperative manifest refraction and higher order aberrometry: the Rochester nomogram. J Refract Surg 23(5):435–441

    PubMed  Google Scholar 

  32. Applegate RA, Hilmantel G, Howland HC, et al (2000) Corneal first surface optical aberrations and visual per formance. J Refract Surg 16(5):507–514

    PubMed  CAS  Google Scholar 

  33. Marcos S (2001) Aberrations and visual performance fol lowing standard laser vision correction. J Refract Surg 17(5):S596–S601

    PubMed  CAS  Google Scholar 

  34. Applegate RA, Sarver EJ, Khemsara V (2002) Are all aber rations equal? J Refract Surg 18(5):S556–S562

    PubMed  Google Scholar 

  35. Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce vis ual performance. J Cataract Refract Surg 29(8):1487–1495

    Article  PubMed  Google Scholar 

  36. Pesudovs K, Marsack JD, Donnelly WJI, et al (2004) Meas-ureing visual acuity-mesopic or photopic conditions, and high or low contrast letters? J Refract Surg 20:S508–SS514

    PubMed  Google Scholar 

  37. Campbell CE (2004) Improving visual function diagnos-tis with the use of higher-order information from metrics. J Refract Surg 20(5):S495–S503

    PubMed  Google Scholar 

  38. Chen L, Singer B, Guirao A, et al (2005) Image metrics for predicting subjective image quality. Optom Vis Sci 82(5):358–369

    Article  PubMed  Google Scholar 

  39. Cheng X, Thibos LN, Bradley A (2003) Estimating visual quality from wavefront aberration measurements. J Refract Surg 19(5):S579–S584

    PubMed  Google Scholar 

  40. Marsack JD, Thibos LN, Applegate RA (2004) Metrics of optical quality derived from wave aberrations predict vis ual performance. J Vis 4(4):322–328

    Article  PubMed  Google Scholar 

  41. Bühren J, Strenger A, Martin T, Kohnen T (2007) Wave-front aberrations and subjective quality of vision after wavefront-guided LASIK: First results. Ophthalmologe 104(8):688–696

    Article  PubMed  Google Scholar 

  42. Seiler T, Mrochen M, Kaemmerer M (2000) Operative correction of ocular aberrations to improve visual acuity. J Refract Surg 16(5):S619–S622

    PubMed  CAS  Google Scholar 

  43. Kohnen T, Kühne C, Bühren J (2007) The future role of wavefront-guided excimer ablation. Graefes Arch Clin Exp Ophthalmol 245:189–194

    Article  PubMed  Google Scholar 

  44. Netto M V, Dupps W, Jr., Wilson SE (2006) Wavefront guided ablation: evidence for efficacy compared to tradi tional ablation. Am J Ophthalmol 141(2):360–368

    Article  PubMed  Google Scholar 

  45. Kim TI, Yang SJ, Tchah H (2004) Bilateral comparison of wavefront-guided versus conventional laser in situ keratomileusis with Bausch and Lomb Zyoptix. J Refract Surg 20(5):432–438

    PubMed  Google Scholar 

  46. Mastropasqua L, Nubile M, Ciancaglini M, et al (2004) Pro spective randomized comparison of wavefront-guided and conventional photorefractive keratectomy for myopia with the meditec MEL 70 laser. J Refract Surg 20(5):422–431

    PubMed  Google Scholar 

  47. Tran DB, Shah V (2006) Higher order aberrations com parison in fellow eyes following intraLase LASIK with wavelight allegretto and customcornea LADArvision4000 systems. J Refract Surg 22(9):S961–S964

    PubMed  Google Scholar 

  48. Manns F, Ho A, Parel JM, Culbertson W (2002) Ablation pro files for wavefront-guided correction of myopia and primary spherical aberration. J Cataract Refract Surg 28(5):766–774

    Article  PubMed  Google Scholar 

  49. Mrochen M, Donitzky C, Wüllner C, Löffler J (2004) Wavefront-optimized ablation profiles: theoretical back ground. J Cataract Refract Surg 30(4):775–785

    Article  PubMed  Google Scholar 

  50. Mastropasqua L, Toto L, Zuppardi E, et al (2006) Photore-fractive keratectomy with aspheric profile of ablation ver sus conventional photorefractive keratectomy for myopia correction: six-month controlled clinical trial. J Cataract Refract Surg 32(1):109–116

    Article  PubMed  Google Scholar 

  51. Padmanabhan P, Mrochen M, Basuthkar S, et al (2008) Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study. J Cataract Refract Surg 34(3):389–397

    Article  PubMed  Google Scholar 

  52. Randleman JB, Loft ES, Banning CS, et al (2007) Outcomes of wavefront-optimized surface ablation. Ophthalmology 114(5):983–988

    Article  PubMed  Google Scholar 

  53. Tuan KM, Chernyak D (2006) Corneal asphericity and visual function after wavefront-guided LASIK. Optom Vis Sci 83(8):605–610

    Article  PubMed  Google Scholar 

  54. Calossi A (2007) Corneal asphericity and spherical aberra tion. J Refract Surg 23(5):505–514

    PubMed  Google Scholar 

  55. Pansell T, Schworm H, Ygge J (2003) Torsional and vertical eye movements during head tilt dynamic characteristics. Invest Ophthalmol Vis Sci 44:2986–2990

    Article  PubMed  Google Scholar 

  56. Bueeler M, Mrochen M, Seiler T (2004) Maximum permis sible torsional misalignment in aberration-sensing and wavefront-guided corneal ablation. J Cataract Refract Surg 30(1):17–25

    Article  PubMed  Google Scholar 

  57. Kohnen T, Kühne C, Cichocki M, Strenger A (2007) Cyclorotation of the eye in wavefront-guided LASIK using a static eyetracker with iris recognition. Ophthalmologe 104(1):60–65

    Article  PubMed  CAS  Google Scholar 

  58. Bharti S, Bains HS (2007) Active cyclotorsion error cor rection during LASIK for myopia and myopic astigmatism with the NIDEK EC-5000 CX III laser. J Refract Surg 23(9 Suppl):S1041–S1045

    PubMed  Google Scholar 

  59. Roberts C (2005) Biomechanical customization: the next generation of laser refractive surgery. J Cataract Refract Surg 31(1):2–5

    Article  PubMed  Google Scholar 

  60. Schruender SA, Fuchs H, Spasovski S, Dankert A (2002) Intraoperative corneal topography for image registration. J Refract Surg 18(5):S624–S629

    PubMed  Google Scholar 

  61. Patel S V, Maguire LJ, McLaren J W, et al (2007) Fem tosecond Laser versus Mechanical Microkeratome for LASIK: a randomized controlled study. Ophthalmol 114:1482–1490

    Google Scholar 

  62. Slade SG (2007) The use of the femtosecond laser in the customization of corneal flaps in laser in situ keratomileu sis. Curr Opin Ophthalmol 18(4):314–317

    Article  PubMed  Google Scholar 

  63. Netto M V, Mohan RR, Ambrosio R Jr, et al (2005) Wound healing in the cornea: a review of refractive surgery complica tions and new prospects for therapy. Cornea 24(5):509–522

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bühren, J., Kohnen, T., MacRae, S.M. (2009). How Should We Manipulate Higher-Order Aberrations After Refractive Surgery?. In: Kohnen, T., Koch, D.D. (eds) Cataract and Refractive Surgery. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76380-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76380-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76378-9

  • Online ISBN: 978-3-540-76380-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics