Skip to main content

Genomic Methods in the Diagnosis and Treatment of Pediatric Kidney Disease

  • Reference work entry
Book cover Pediatric Nephrology
  • 2762 Accesses

Abstract

The completion of the Human Genome Project (HGP) in 2003 has laid the foundation and driven the technological advancements necessary for the study of the genetics of complex, multi-factorial diseases, such as those affecting the kidney. The International HapMap Project has built upon the HGP through the systematic identification and cataloguing of genetic variation across human populations. Translating the mass of data generated by these studies into useful clinical knowledge is now a major undertaking in nearly all areas of medicine, including the field of Pediatric Nephrology. Much of this work will revolve around linking particular patient phenotypes to genomic and proteomic data, such as genotype, expression profile, and protein biomarkers. As evidenced by the etiological advances made in various kidney disorders resulting from the application of genome-wide linkage analyses in the 1990’s, there are a number of unique aspects of Pediatric Nephrology that make it an area particularly suitable to genomic exploration with such novel technologies as genome-wide association and expression analyses. These aspects relate both to the clinical characteristics, as well as to public health and epidemiological concerns, of pediatric kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mochizuki T et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996; 272(5266):1339–1342.

    PubMed  CAS  Google Scholar 

  2. Schneider MC et al. A gene similar to PKD1 maps to chromosome 4q22: a candidate gene for PKD2. Genomics 1996;38(1):1–4.

    PubMed  CAS  Google Scholar 

  3. Hughes J et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 1995;10(2):151–160.

    PubMed  CAS  Google Scholar 

  4. Peters DJ et al. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet 1993;5(4):359–362.

    PubMed  CAS  Google Scholar 

  5. Ward CJ et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 2002;30(3):259–269.

    PubMed  Google Scholar 

  6. Hugot JP et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001;411(6837):599–603.

    PubMed  CAS  Google Scholar 

  7. Horikawa Y et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26(2):163–175.

    PubMed  CAS  Google Scholar 

  8. Helgadottir A et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004;3(3):233–239.

    Google Scholar 

  9. Ogura Y et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001;411(6837):603–606.

    PubMed  CAS  Google Scholar 

  10. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516–1517.

    PubMed  CAS  Google Scholar 

  11. Hirschhorn JN et al. A comprehensive review of genetic association studies. Genet Med 2002;4(2):45–61.

    PubMed  CAS  Google Scholar 

  12. Salonen JT et al. Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am J Hum Genet 2007;81(2):338–345.

    PubMed  CAS  Google Scholar 

  13. Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447(7145):661–678.

    Google Scholar 

  14. Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei YF, Zhang L, Recker RR, Froguel P, Deng HW. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet 2008;17(12):1803–1813.

    PubMed  CAS  Google Scholar 

  15. Hwang SJ et al. A genome-wide association for kidney function and endocrine-related traits in the NHLBI’s Framingham Heart Study. BMC Med Genet 2007;8(Suppl 1):S10.

    PubMed  Google Scholar 

  16. Kestila M et al. Congenital nephrotic syndrome of the Finnish type maps to the long arm of chromosome 19. Am J Hum Genet 1994;54(5):757–764.

    PubMed  CAS  Google Scholar 

  17. Kestila M et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1998;1(4):575–582.

    PubMed  CAS  Google Scholar 

  18. Boute N et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. [erratum appears in Nat Genet 2000;May;25(1):125]. Nat Genet 2000;24(4):349–354.

    PubMed  CAS  Google Scholar 

  19. Fuchshuber A et al. Mapping a gene (SRN1) to chromosome 1q25-q31 in idiopathic nephrotic syndrome confirms a distinct entity of autosomal recessive nephrosis. Hum Mol Genet 1995;4(11):2155–2158.

    PubMed  CAS  Google Scholar 

  20. Mondry A et al. DNA polymorphisms and renal disease: a critical appraisal of studies presented at the annual ERA/EDTA and ASN conferences in 2004 and 2005. Nephrol Dial Transplant 2006;21(10):2775–2779.

    PubMed  CAS  Google Scholar 

  21. Frimat L et al. Polymorphism of angiotensin converting enzyme, angiotensinogen, and angiotensin II type 1 receptor genes and end-stage renal failure in IgA nephropathy: IGARAS—a study of 274 Men. J Am Soc Nephrol 2000;11(11):2062–2067.

    PubMed  CAS  Google Scholar 

  22. Schena FP et al. ACE gene polymorphism and IgA nephropathy: an ethnically homogeneous study and a meta-analysis. Kidney Int 2001;60(2):732–740.

    PubMed  CAS  Google Scholar 

  23. Pereira TV et al. Influence of ACE I/D gene polymorphism in the progression of renal failure in autosomal dominant polycystic kidney disease: a meta-analysis. Nephrol Dial Transplant 2006;21(11):3155–3163.

    PubMed  CAS  Google Scholar 

  24. Brenchley PE et al. Translating knowledge of the human genome into clinical practice in nephrology dialysis and transplantation: the renal genome network (ReGeNet). Nephrol Dial Transplant 2006;21(10):2681–2683.

    PubMed  CAS  Google Scholar 

  25. Fliser D et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 2007;18(4):1057–1071.

    PubMed  CAS  Google Scholar 

  26. Nguyen MT, Devarajan P. Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol 2008;23(12):2151–2157.

    PubMed  Google Scholar 

  27. Mathieson P.W. Minimal change nephropathy and focal segmental glomerulosclerosis. Semin Immunopathol 2007;29(4):415–426.

    PubMed  Google Scholar 

  28. Niaudet P. Genetic forms of nephrotic syndrome. Pediatr Nephrol 2004;19(12):1313–1318.

    PubMed  Google Scholar 

  29. Hinkes B et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 2006;38(12):1397–1405.

    PubMed  CAS  Google Scholar 

  30. Hasselbacher K et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int 2006;70(6):1008–1012.

    PubMed  CAS  Google Scholar 

  31. Zenker M et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004;13(21):2625–2632.

    PubMed  CAS  Google Scholar 

  32. Hinkes BG et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 2007;119(4):e907–e919.

    PubMed  Google Scholar 

  33. Hinkes B et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2008;19(2):365–371.

    PubMed  Google Scholar 

  34. Weber S et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int 2004;66(2);571–579.

    PubMed  CAS  Google Scholar 

  35. Ruf RG et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 2004;15(3):722–732.

    PubMed  Google Scholar 

  36. Niaudet P. Utility of genetic screening in children with nephrotic syndrome presenting during the first year of life. Nat Clinl Pract Nephrol 2007;3(9):472–473.

    Google Scholar 

  37. Ruf RG et al. Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol 2003;14(7):1897–1900.

    PubMed  CAS  Google Scholar 

  38. Taylor CM et al. Clinico-pathological findings in diarrhoea-negative haemolytic uraemic syndrome. Pediatr Nephrol 2004;19(4):419–425.

    PubMed  CAS  Google Scholar 

  39. Richards A et al. Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol 2007;44(1–3):111–122.

    PubMed  CAS  Google Scholar 

  40. Kind T et al. Cobalamin C disease presenting as hemolytic-uremic syndrome in the neonatal period. J Pediatr Hematol Oncol 2002;24(4):327–329.

    PubMed  Google Scholar 

  41. Dlott JS et al. Drug-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a concise review. Ther Apher Dial 2004;8(2):102–111.

    PubMed  CAS  Google Scholar 

  42. Becker S et al. HIV-associated thrombotic microangiopathy in the era of highly active antiretroviral therapy: an observational study. Clin Infect Dis 2004;39(Suppl 5):S267–S275.

    PubMed  Google Scholar 

  43. Constantinescu AR et al. Non-enteropathic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis 2004;43(6):976–982.

    PubMed  Google Scholar 

  44. George JN. The association of pregnancy with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol 2003;10(5):339–344.

    PubMed  Google Scholar 

  45. Mungall S, Mathieson P. Hemolytic uremic syndrome in metastatic adenocarcinoma of the prostate. Am J Kidney Dis 2002;40(6):1334–1336.

    PubMed  Google Scholar 

  46. Pichette V et al. Familial hemolytic-uremic syndrome and homozygous factor H deficiency. Am J Kidney Dis 1994;24(6):936–941.

    PubMed  CAS  Google Scholar 

  47. Pirson Y et al. Hemolytic uremic syndrome in three adult siblings: a familial study and evolution. Clin Nephrol 1987;28(5):250–255.

    PubMed  CAS  Google Scholar 

  48. Kaplan BS et al. Renal transplantation in adults with autosomal recessive inheritance of hemolytic uremic syndrome. Am J Kidney Dis 1997;30(6):760–765.

    PubMed  CAS  Google Scholar 

  49. Warwicker P et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int 1998;53(4):836–844.

    PubMed  CAS  Google Scholar 

  50. Caprioli J et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet 2003;12(24):3385–3395.

    PubMed  CAS  Google Scholar 

  51. Caprioli J et al. The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol 2001;12(2):297–307.

    PubMed  CAS  Google Scholar 

  52. Martinez-Barricarte R et al. The complement factor H R1210C mutation is associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol 2008;19(3):639–646.

    PubMed  CAS  Google Scholar 

  53. Perez-Caballero D et al. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet 2001;68(2):478–484.

    PubMed  CAS  Google Scholar 

  54. Richards A et al. Factor H mutations in hemolytic uremic syndrome cluster in exons 18–20, a domain important for host cell recognition. Am J Hum Genet 2001;68(2):485–490.

    PubMed  CAS  Google Scholar 

  55. Sanchez-Corral P et al. Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. Am J Hum Genet 2002;71(6):1285–1295.

    PubMed  CAS  Google Scholar 

  56. Fremeaux-Bacchi V et al. The development of atypical haemolytic-uraemic syndrome is influenced by susceptibility factors in factor H and membrane cofactor protein: evidence from two independent cohorts. J Med Genet 2005;42(11):852–856.

    PubMed  CAS  Google Scholar 

  57. Noris M et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 2003;362(9395):1542–1547.

    PubMed  CAS  Google Scholar 

  58. Richards A et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Nat Acad Sci USA 2003;100(22):12966–12971.

    PubMed  CAS  Google Scholar 

  59. Fremeaux-Bacchi V et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 2004;41(6):e84.

    PubMed  CAS  Google Scholar 

  60. Kavanagh D et al. Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol 2005;16(7):2150–2155.

    PubMed  CAS  Google Scholar 

  61. Goicoechea de Jorge E et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. [erratum appears in Proc Natl Acad Sci USA 2007;Jun 19;104(25):10749]. Proc Natl Acad Sci USA 2007;104(1):240–245.

    PubMed  CAS  Google Scholar 

  62. Fremeaux-Bacchi V, Regnier C, Blouin J, Dragon-Durey MA, Fridman WH, Janssen B, Loirat C. Protective or aggressive: Paradoxical role of C3 in atypical hemolytic uremic syndrome. Mol Immunol 2007;44(1):172.

    Google Scholar 

  63. Caprioli J et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 2006;108(4):1267–1279.

    PubMed  CAS  Google Scholar 

  64. de Cordoba SR, de Jorge EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol 2008;151(1):1–13.

    PubMed  Google Scholar 

  65. Neumann HP et al. Haemolytic uraemic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. J Med Genet 2003;40(9):676–681.

    PubMed  CAS  Google Scholar 

  66. Sellier-Leclerc AL et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol 2007;18(8):2392–2400.

    PubMed  CAS  Google Scholar 

  67. Pickering MC et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med 2007;204(6):1249–1256.

    PubMed  CAS  Google Scholar 

  68. Esparza-Gordillo J et al. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. [erratum appears in Hum Mol Genet 2005;Apr 15;14(8):1107]. Hum Mol Genet 2005;14(5):703–712.

    PubMed  CAS  Google Scholar 

  69. Esparza-Gordillo J et al. Insights into hemolytic uremic syndrome: segregation of three independent predisposition factors in a large, multiple affected pedigree. Mol Immunol, 2006;43(11):1769–1775.

    PubMed  CAS  Google Scholar 

  70. Zerres K, Rudnik-Schoneborn S, Deget F. Childhood onset autosomal dominant polycystic kidney disease in sibs: clinical picture and recurrence risk. German Working Group on Paediatric Nephrology (Arbeitsgemeinschaft fur Padiatrische Nephrologie. J Med Genet 1993;30(7):583–588.

    PubMed  CAS  Google Scholar 

  71. Fick GM et al. Characteristics of very early onset autosomal dominant polycystic kidney disease. J Am Soc Nephrol 1993;3(12):1863–1870.

    PubMed  CAS  Google Scholar 

  72. Peters DJ, Sandkuijl LA. Genetic heterogeneity of polycystic kidney disease in Europe. Contrib Nephrol 1992;97:128–139.

    PubMed  CAS  Google Scholar 

  73. Harris PC et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2006;17(11):3013–3019.

    PubMed  CAS  Google Scholar 

  74. Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2007;18(5):1374–1380.

    PubMed  CAS  Google Scholar 

  75. Hateboer N et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 1999;353(9147):103–107.

    PubMed  CAS  Google Scholar 

  76. Michaud J et al. Autosomal dominant polycystic kidney disease in the fetus. Am J Med Genet 1994;51(3):240–246.

    PubMed  CAS  Google Scholar 

  77. Torra R et al. Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol 1996;7(10):2142–2151.

    PubMed  CAS  Google Scholar 

  78. Rossetti S et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 2003;361(9376):2196–2201.

    PubMed  CAS  Google Scholar 

  79. Rossetti S et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol 2002;13(5):1230–1237.

    PubMed  CAS  Google Scholar 

  80. Paterson AD et al. Progressive loss of renal function is an age-dependent heritable trait in type 1 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2005;16(3):755–762.

    PubMed  Google Scholar 

  81. Fain PR et al. Modifier genes play a significant role in the phenotypic expression of PKD1. Kidney Int 2005;67(4):1256–1267.

    PubMed  CAS  Google Scholar 

  82. Pei Y. Nature and nurture on phenotypic variability of autosomal dominant polycystic kidney disease. Kidney Int 2005;67(4):1630–1631.

    PubMed  Google Scholar 

  83. Persu A et al. Modifier effect of ENOS in autosomal dominant polycystic kidney disease. Hum Mol Genet 2002;11(3):229–241.

    PubMed  CAS  Google Scholar 

  84. Walker D et al. The ENOS polymorphism is not associated with severity of renal disease in polycystic kidney disease 1. Am J Kidney Dis 2003;41(1):90–94.

    PubMed  CAS  Google Scholar 

  85. Furu L et al. Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol 2003;14(8):2004–2014.

    PubMed  CAS  Google Scholar 

  86. Rossetti S et al. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int 2003;64(2):391–403.

    PubMed  CAS  Google Scholar 

  87. Sharp AM et al. Comprehensive genomic analysis of PKHD1 mutations in ARPKD cohorts. J Med Genet 2005;42(4):336–349.

    PubMed  CAS  Google Scholar 

  88. Mrug M et al. Kinesin family member 12 is a candidate polycystic kidney disease modifier in the cpk mouse. J Am Soc Nephrol 2005;16(4):905–916.

    PubMed  CAS  Google Scholar 

  89. Glassock RJ et al. IgA nephropathy in Japan. Am J Nephrol 1985;5(2):127–137.

    PubMed  CAS  Google Scholar 

  90. D’Amico G. The commonest glomerulonephritis in the world: IgA nephropathy. Q J Med 1987;64(245):709–727.

    PubMed  Google Scholar 

  91. Levy M, Berger J. Worldwide perspective of IgA nephropathy. Am J Kidney Dis 1988;12(5):340–347.

    PubMed  CAS  Google Scholar 

  92. Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am J Med 1990;89(2):209–215.

    PubMed  CAS  Google Scholar 

  93. Hsu SI et al. Evidence for genetic factors in the development and progression of IgA nephropathy. Kidney Int 2000;57(5):1818–1835.

    PubMed  CAS  Google Scholar 

  94. Johnson RJ et al. Hypothesis: dysregulation of immunologic balance resulting from hygiene and socioeconomic factors may influence the epidemiology and cause of glomerulonephritis worldwide. Am J Kidney Dis 2003;42(3):575–581.

    PubMed  Google Scholar 

  95. Coppo R. Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin Nephrol 2008;28(1):18–26.

    PubMed  Google Scholar 

  96. Coppo R et al. Frequency of renal diseases and clinical indications for renal biopsy in children (report of the Italian National Registry of Renal Biopsies in Children). Group of Renal Immunopathology of the Italian Society of Pediatric Nephrology and Group of Renal Immunopathology of the Italian Society of Nephrology. Nephrol Dial Transplant 1998;13(2):293–297.

    PubMed  CAS  Google Scholar 

  97. Lee YM et al. Analysis of renal biopsies performed in children with abnormal findings in urinary mass screening. Acta Paediatr 2006;95(7):849–853.

    PubMed  Google Scholar 

  98. Yoshikawa N, Tanaka R, Iijima K. Pathophysiology and treatment of IgA nephropathy in children. Pediatr Nephrol 2001;16(5):446–457.

    PubMed  CAS  Google Scholar 

  99. Hogg RJ. IgA nephropathy: what’s new? Pediatr Nephrol 2007;22(11):1809–1814.

    PubMed  Google Scholar 

  100. Ronkainen J et al. Long-term outcome 19 years after childhood IgA nephritis: a retrospective cohort study. Pediatr Nephrol 2006;21(9):1266–1273.

    PubMed  Google Scholar 

  101. Coppo R et al. Idiopathic nephropathy with IgA deposits. Pediatr Nephrol 2000;15(1–2):139–150.

    PubMed  CAS  Google Scholar 

  102. Coppo R, D’Amico G. Factors predicting progression of IgA nephropathies. J Nephrol 2005;18(5):503–512.

    PubMed  Google Scholar 

  103. Yoshikawa N, Ito H, Nakamura H. Prognostic indicators in childhood IgA nephropathy. Nephron 1992;60(1):60–67.

    PubMed  CAS  Google Scholar 

  104. Linne T et al. Course and long-term outcome of idiopathic IgA nephropathy in children. Pediatr Nephrol 1991;5(4):383–386.

    PubMed  CAS  Google Scholar 

  105. Levy M et al. Berger’s disease in children. Natural history and outcome. Medicine 1985;64(3):157–180.

    PubMed  CAS  Google Scholar 

  106. Hastings MC, Delos Santos NM, Wyatt RJ. Renal survival in pediatric patients with IgA nephropathy. Pediatr Nephrol 2007;22(2):317–318.

    PubMed  Google Scholar 

  107. Nozawa R et al. Clinicopathological features and the prognosis of IgA nephropathy in Japanese children on long-term observation. Clin Nephrol 2005;64(3):171–179.

    PubMed  CAS  Google Scholar 

  108. Wyatt RJ et al. IgA nephropathy: long-term prognosis for pediatric patients. J Pediatr 1995;127(6):913–919.

    PubMed  CAS  Google Scholar 

  109. Tomana M et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 1997;52(2):509–516.

    PubMed  CAS  Google Scholar 

  110. Tomana M et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 1999;104(1):73–81.

    PubMed  CAS  Google Scholar 

  111. Novak J et al. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 2008;28(1):78–87.

    PubMed  CAS  Google Scholar 

  112. Gharavi AG et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nat Genet 2000;26(3):354–357.

    PubMed  CAS  Google Scholar 

  113. Schena FP et al. The IgA nephropathy Biobank. An important starting point for the genetic dissection of a complex trait. BMC Nephrol 2005;6:14.

    PubMed  Google Scholar 

  114. Bisceglia L et al. Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am J Hum Genet 2006;79(6):1130–1134.

    PubMed  CAS  Google Scholar 

  115. Paterson AD et al. Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36. J Am Soc Nephrol 2007;18(8):2408–2415.

    PubMed  CAS  Google Scholar 

  116. Beerman I et al. The genetics of IgA nephropathy. Nat Clin Pract Nephrol 2007;3(6):325–338.

    PubMed  CAS  Google Scholar 

  117. Li YJ et al. Family-based association study showing that immunoglobulin A nephropathy is associated with the polymorphisms 2093C and 2180T in the 3’ untranslated region of the Megsin gene. J Am Soc Nephrol 2004;15(7):1739–1743.

    PubMed  CAS  Google Scholar 

  118. Xia YF et al. A family-based association study of megsin A23167G polymorphism with susceptibility and progression of IgA nephropathy in a Chinese population. Clin Nephrol 2006;65(3):153–159.

    PubMed  CAS  Google Scholar 

  119. Kim YS et al. Uteroglobin gene polymorphisms affect the progression of immunoglobulin A nephropathy by modulating the level of uteroglobin expression. Pharmacogenetics 2001;11(4):299–305.

    PubMed  CAS  Google Scholar 

  120. Narita I et al. Role of uteroglobin G38A polymorphism in the progression of IgA nephropathy in Japanese patients. Kidney Int 2002;61(5):1853–1858.

    PubMed  CAS  Google Scholar 

  121. Matsunaga A et al. Association of the uteroglobin gene polymorphism with IgA nephropathy. Am J Kidney Dis 2002;39(1):36–41.

    PubMed  CAS  Google Scholar 

  122. Li GS et al. Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int 2007;71(5):448–453.

    PubMed  CAS  Google Scholar 

  123. Takei T et al. Association between single-nucleotide polymorphisms in selectin genes and immunoglobulin A nephropathy. Am J Hum Genet 2002;70(3):781–786.

    PubMed  CAS  Google Scholar 

  124. Tuglular S, Berthoux P, Berthoux F. Polymorphisms of the tumour necrosis factor alpha gene at position -308 and TNFd microsatellite in primary IgA nephropathy. Nephrol Dial Transplant 2003;18(4):724–731.

    PubMed  CAS  Google Scholar 

  125. Carturan S et al. Association between transforming growth factor beta1 gene polymorphisms and IgA nephropathy. J Nephrol 2004;17(6):786–793.

    PubMed  CAS  Google Scholar 

  126. Masutani K et al. Impact of interferon-gamma and interleukin-4 gene polymorphisms on development and progression of IgA nephropathy in Japanese patients. Am J Kidney Dis 2003;41(2):371–379.

    PubMed  CAS  Google Scholar 

  127. Akiyama F et al. Single-nucleotide polymorphisms in the class II region of the major histocompatibility complex in Japanese patients with immunoglobulin A nephropathy. J Hum Genet 2002;47(10):532–538.

    PubMed  CAS  Google Scholar 

  128. Obara W et al. Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet 2003;48(6):293–299.

    PubMed  CAS  Google Scholar 

  129. Ohtsubo S et al. Association of a single-nucleotide polymorphism in the immunoglobulin mu-binding protein 2 gene with immunoglobulin A nephropathy. J Hum Genet 2005;50(1):30–35.

    PubMed  CAS  Google Scholar 

  130. Berthoux FC et al. CC-chemokine receptor five gene polymorphism in primary IgA nephropathy: the 32 bp deletion allele is associated with late progression to end-stage renal failure with dialysis. Kidney Int 2006;69(3):565–572.

    PubMed  CAS  Google Scholar 

  131. Panzer U et al. The chemokine receptor 5 Delta32 mutation is associated with increased renal survival in patients with IgA nephropathy. erratum appears in Kidney Int 2005 Mar;67(3):1213 Note: Kramer, Bernhard H [corrected to Kramer, Bernhard K]] Kidney Int 2005;67(1):75–81.

    PubMed  CAS  Google Scholar 

  132. Ogden CL et al. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 2002;288(14):1728–1732.

    PubMed  Google Scholar 

  133. Ogden CL et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006;295(13):1549–1555.

    PubMed  CAS  Google Scholar 

  134. Chinn S, Rona RJ. Prevalence and trends in overweight and obesity in three cross sectional studies of British Children, 1974–94. BMJ 2001;322(7277):24–26.

    PubMed  CAS  Google Scholar 

  135. de Onis M, Blossner M. Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr 2000;72(4):1032–1039.

    PubMed  CAS  Google Scholar 

  136. Filozof C et al. Obesity prevalence and trends in Latin-American countries. Obes Rev 2001;2(2):99–106.

    PubMed  CAS  Google Scholar 

  137. Wang Y et al. Epidemic of childhood obesity: implications for kidney disease. Adv Chronic Kidney Dis 2006;13(4):336–351.

    PubMed  Google Scholar 

  138. McDonald SP, Craig JC., Australian and New Zealand Paediatric Nephrology. Long-term survival of children with end-stage renal disease. N Engl J Med 2004;350(26):2654–2662.

    PubMed  CAS  Google Scholar 

  139. Groothoff JW. Long-term outcomes of children with end-stage renal disease. Pediatr Nephrol 2005;20(7):849–853.

    PubMed  CAS  Google Scholar 

  140. Balinsky W. Pediatric end-stage renal disease: incidence, management, and prevention. J Pediatr Health Care 2000;14(6):304–308.

    PubMed  CAS  Google Scholar 

  141. Iyengar SK et al. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 2007;56(6):1577–1585.

    PubMed  CAS  Google Scholar 

  142. Imperatore G et al. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes 1998;47(5):821–830.

    PubMed  CAS  Google Scholar 

  143. Moczulski DK et al. Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. Diabetes 1998;47(7):1164–1169.

    PubMed  CAS  Google Scholar 

  144. Yu H et al. Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease. Hypertension 1998;31(4):906–911

    PubMed  CAS  Google Scholar 

  145. Bowden DW et al. A genome scan for diabetic nephropathy in African Americans. Kidney Int 2004;66(4):1517–1526.

    PubMed  CAS  Google Scholar 

  146. Yu H et al. Linkage analysis between loci in the renin-angiotensin axis and end-stage renal disease in African Americans. J Am Soc Nephrol 1996;7(12):2559–2564.

    PubMed  CAS  Google Scholar 

  147. Freedman BI et al. Genetic linkage analysis of growth factor loci and end-stage renal disease in African Americans. Kidney Int 1997;51(3):819–825.

    PubMed  CAS  Google Scholar 

  148. Freedman BI et al. Linkage heterogeneity of end-stage renal disease on human chromosome 10. Kidney Int 2002;62(3):770–774.

    PubMed  CAS  Google Scholar 

  149. Yu H et al. Evaluation of markers on human chromosome 10, including the homologue of the rodent Rf-1 gene, for linkage to ESRD in black patients. Am J Kidney Dis 1999;33(2):294–300.

    PubMed  CAS  Google Scholar 

  150. Vardarli I et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3–23. Kidney Int 2002;62(6):2176–2183.

    PubMed  CAS  Google Scholar 

  151. Iyengar SK et al. Linkage analysis of candidate loci for end-stage renal disease due to diabetic nephropathy. J Am Soc Nephrol 2003;14(7 Suppl 2):S195–S201.

    PubMed  CAS  Google Scholar 

  152. Freedman BI et al. A genome scan for all-cause end-stage renal disease in African Americans. Nephrol Dial Transplant 2005;20(4):712–718.

    PubMed  CAS  Google Scholar 

  153. Osterholm AM et al. Genome-wide scan for type 1 diabetic nephropathy in the Finnish population reveals suggestive linkage to a single locus on chromosome 3q. Kidney Int 2007;71(2):140–145.

    PubMed  CAS  Google Scholar 

  154. Iyengar SK, Freedman BI, Sedor JR. Mining the genome for susceptibility to diabetic nephropathy: the role of large-scale studies and consortia. Semin Nephrol 2007;27(2):208–222.

    PubMed  CAS  Google Scholar 

  155. Janssen B et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 2005;54:(8)2320–2327.

    PubMed  CAS  Google Scholar 

  156. Freedman BI et al. A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant 2007;22(4):1131–1135.

    PubMed  CAS  Google Scholar 

  157. Hanson RL et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 2007;56(4):975–983.

    PubMed  CAS  Google Scholar 

  158. Shimazaki A et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 2005;54(4):1171–1178.

    PubMed  CAS  Google Scholar 

  159. McKnight AJ et al. A genome-wide DNA microsatellite association screen to identify chromosomal regions harboring candidate genes in diabetic nephropathy. J Am Soc Nephrol 2006;17(3):831–836.

    PubMed  CAS  Google Scholar 

  160. Ewens KG et al. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes 2005;54(11):3305–3318.

    PubMed  CAS  Google Scholar 

  161. Schelling JR et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 2008;57(1):235–243.

    PubMed  CAS  Google Scholar 

  162. Freedman BI et al. A genome-wide scan for urinary albumin excretion in hypertensive families. Hypertension 2003;42(3):291–296.

    PubMed  CAS  Google Scholar 

  163. Lander ES, Schork NJ. Genetic dissection of complex traits. [erratum appears in Science 1994 Oct 21;266(5184):353]. Science 1994;265(5181):2037–2048.

    PubMed  CAS  Google Scholar 

  164. Carlson CS et al. Mapping complex disease loci in whole-genome association studies. Nature 2004;429(6990):446–452.

    PubMed  CAS  Google Scholar 

  165. Ghosh S, Schork NJ. Genetic analysis of NIDDM. The study of quantitative traits. Diabetes 1996;45(1):1–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Maresso, K., Broeckel, U. (2009). Genomic Methods in the Diagnosis and Treatment of Pediatric Kidney Disease. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics