Skip to main content

Scurfy, the Foxp3 Locus, and the Molecular Basis of Peripheral Tolerance

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 321))

Abstract

The ability to rapidly and efficiently recognize and eliminate pathogens while sparing normal self tissue is a hallmark of the mammalian immune system. When it fails, however, autoimmune disease results. The genetic and environmental factors that control the process of making such distinctions, not to mention the specific targeted tissues, are extraordinarily complex in the human population; only now are we characterizing the candidate genes responsible for these responses to pathogens. The examination of specific traits in murine models of disease has led to the identification of many of the candidate genes for human disease. The study of mouse mutations (both induced and spontaneous) has also greatly advanced our understanding of the immune responses and autoimmune disease. Here, we describe the use of classical mouse genetics to identify one gene centrally involved in the control of immune responses. Furthermore, although mutations in the orthologous human gene result in a virtually identical phenotype to that seen in the mouse, it is unlikely that studying the human disease populations alone would have successfully identified this gene. Thus, despite the complete sequencing of the human and mouse genomes, the examination of murine mutations remains a powerful and unbiased tool to connect genotype and phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaltonen J, Björses P, Perheentupa J, Horelli-Kuitunen N, Palotie A, Peltonen L, Su Lee Y, Francis F, Henning S, Thiel C, Leharach H, Yaspo ML (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. The Finnish-German APECED Consortium. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Nat Genet 17:399–403

    Article  Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23:227–239

    Article  PubMed  CAS  Google Scholar 

  • Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351–358

    Article  PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Hafler DA (2006) Human regulatory T cells and their role in autoimmune disease. Immunol Rev 212:203–216

    Article  PubMed  CAS  Google Scholar 

  • Basten A, Brink R, Peake P, Adams E, Crosbie J, Hartley S, Goodnow CC (1991) Self tolerance in the B-cell repertoire. Immunol Rev 122:5–19

    Article  PubMed  CAS  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, Dastrange M, Oukka M (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 102:5138–5143

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K (2006) Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24:353–389

    Article  PubMed  CAS  Google Scholar 

  • Blair PJ, Bultman SJ, Haas JC, Rouse BT, Wilkinson JE, Godfrey VL (1994a) CD4+CD8 T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J Immunol 153:3764–3774

    PubMed  CAS  Google Scholar 

  • Brown SD, Peters J (1996) Combining mutagenesis and genomics in the mouse—closing the phenotype gap. Trends Genet 12:433–435

    Article  PubMed  CAS  Google Scholar 

  • Blair PJ, Carpenter DA, Godfrey VL, Russell LB, Wilkinson JE, Rinchik EM (1994b) The mouse scurfy (sf) mutation is tightly linked to Gata1 and Tfe3 on the proximal X chromosome. Mamm Genome 5:652–654

    Article  PubMed  CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD (2006) Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 281:36828–36834

    Article  PubMed  CAS  Google Scholar 

  • Clark LB, Appleby MW, Brunkow ME, Wilkinson JE, Ziegler SF, Ramsdell F (1999) Cellular and molecular characterization of the scurfy mouse mutant. J Immunol 162:2546–2554

    PubMed  CAS  Google Scholar 

  • Cook MC, Vinuesa CG, Goodnow CC (2006) ENU-mutagenesis: insight into immune function and pathology. Curr Opin Immunol 18:627–633

    Article  PubMed  CAS  Google Scholar 

  • Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 79:922

    Google Scholar 

  • Derry JM, Wiedemann P, Blair P, Wang Y, Kerns JA, Lemahieu V, Godfrey VL, Wilkinson JE, Francke U (1995) The mouse homolog of the Wiskott-Aldrich syndrome protein (WASP) gene is highly conserved and maps near the scurfy (sf) mutation on the X chromosome. Genomics 29:471–477

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  • Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445:771–775

    Article  PubMed  CAS  Google Scholar 

  • Godfrey VL, Wilkinson JE, Russell LB (1991a) X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 138:1379–1387

    PubMed  CAS  Google Scholar 

  • Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB (1991b) Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci U S A 88:5528–5532

    Article  PubMed  CAS  Google Scholar 

  • Godfrey VL, Rouse BT, Wilkinson JE (1994) Transplantation of T cell-mediated, lymphoreticular disease from the scurfy (sf) mouse. Am J Pathol 145:281–286

    PubMed  CAS  Google Scholar 

  • Goodnow CC, Adelstein S, Basten A (1990) The need for central and peripheral tolerance in the B cell repertoire. Science 248:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49:273–280

    Article  PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  • Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333:742–746

    Article  PubMed  CAS  Google Scholar 

  • Klein L, Kyewski B (2000) “Promiscuous” expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity? J Mol Med 78:483–494

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wildin RS (2001) Neonatal diabetes mellitus, enteropathy, thrombocytopenia, and endocrinopathy: further evidence for an X-linked lethal syndrome. J Pediatr 138:577–580

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, Williams CB, Chatila TA (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8:359–638

    Article  PubMed  CAS  Google Scholar 

  • Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, Ziegler SF (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177:3133–3142

    PubMed  CAS  Google Scholar 

  • Lyon MF, Peters J, Glenister PH, Ball S, Wright E (1990) The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci U S A 87:2433–2437

    Article  PubMed  CAS  Google Scholar 

  • MacDonald HR, Pedrazzini T, Schneider R, Louis JA, Zinkernagel RM, Hengartner H (1988) Intrathymic elimination of Mlsa-reactive (V beta 6+) cells during neonatal tolerance induction to Mlsa-encoded antigens. J Exp Med 167:2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Mantel PY, Ouaked N, Ruckert B, Karagiannidis C, Welz R, Blaser K, Schmidt-Weber CB (2006) Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol 176:3593–3602

    PubMed  CAS  Google Scholar 

  • Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac D, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935

    Article  PubMed  CAS  Google Scholar 

  • Mottet C, Uhlig HH, Powrie F (2003) Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 170:3939–3943

    PubMed  CAS  Google Scholar 

  • Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944

    Article  PubMed  CAS  Google Scholar 

  • Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398

    Article  PubMed  CAS  Google Scholar 

  • Nemazee DA, Burki K (1989) Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337:562–566

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689

    Article  PubMed  CAS  Google Scholar 

  • Peake JE, McCrossin RB, Byrne G, Shepherd R (1996) X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed 74:F195–199

    Article  PubMed  CAS  Google Scholar 

  • Picca CC, Larkin J 3rd, Boesteanu A, Lerman MA, Rankin AL, Caton AJ (2006) Role of TCR specificity in CD4+ CD25+ regulatory T-cell selection. Immunol Rev 212:74–85

    Article  PubMed  Google Scholar 

  • Powell BR, Buist NR, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100:731–737

    Article  PubMed  CAS  Google Scholar 

  • Russell WL (1951) X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol 16:327–336

    PubMed  CAS  Google Scholar 

  • Russell WL, Russell LB, Kelly EM (1958) Radiation dose rate and mutation frequency. Science 128:1546–1550

    Article  PubMed  CAS  Google Scholar 

  • Russell WL, Russell LB, Gower JS (1959) Exceptional Inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female. Proc Natl Acad Sci USA 45:554–560

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 61:72–87

    Article  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF (2001) Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276:37672–37679

    Article  PubMed  CAS  Google Scholar 

  • Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY (1988) Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336:73–76

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2000) Regulatory T cells in autoimmmunity*. Annu Rev Immunol 18:423–449

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  • Silver LM (1995) Mouse genetics: concepts and applications. Oxford University Press, New York, pp 114–132

    Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Welshons WJ, Russell LB (1959) The Y-chromosome as the bearer of the male determining factors in the mouse. Proc Natl Acad Sci USA 45:560–566

    Article  PubMed  CAS  Google Scholar 

  • Wildin RS, Freitas A (2005) IPEX and FOXP3: clinical and research perspectives. J Autoimmun 25 Suppl:56–62

    Article  PubMed  CAS  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387

    Article  PubMed  CAS  Google Scholar 

  • Zahorsky-Reeves JL, Wilkinson JE (2001) The murine mutation scurfy (sf) results in an antigen-dependent lymphoproliferative disease with altered T cell sensitivity. Eur J Immunol 31:196–204

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ramsdell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Appleby, M.W., Ramsdell, F. (2008). Scurfy, the Foxp3 Locus, and the Molecular Basis of Peripheral Tolerance. In: Beutler, B. (eds) Immunology, Phenotype First: How Mutations Have Established New Principles and Pathways in Immunology. Current Topics in Microbiology and Immunology, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75203-5_7

Download citation

Publish with us

Policies and ethics