Skip to main content

Hairy Roots of Catharanthus roseus: Efficient Routes to Monomeric Indole Alkaloid Production

  • Chapter
Bioactive Molecules and Medicinal Plants

Abstract

Vinblastine, an efficient antineoplastic drug produced in Catharanthus roseus, can be semi-synthesized in vitro by coupling catharanthine and vindoline. Highly differentiated hairy root cultures are potentially able to produce all of the precursors found in the natural roots. We have established hairy root clones from Catharanthus explants and analysed terpenoid indole alkaloids by thin-layer chromatography, spectrofluorometry and high performance liquid chromatography. Among 441 hairy root clones developing on solid medium, 73 fast-growing clones were transferred into liquid culture, from which 28 wellestablished clones could be obtained. Six of these hairy root clones, elicited or not elicited by methyl jasmonate, biosynthesized ajmalicine, serpentine, catharanthine, tabersonine and vindolinine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) Curr Med Chem 11:607

    Article  Google Scholar 

  2. Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Biotechnol Lett 21:467

    Article  CAS  Google Scholar 

  3. Tikhomiroff C, Jolicoeur M (2002) J Chromatogr A 955:87

    Article  CAS  Google Scholar 

  4. Davioud E, Kan C, Hamon J, Tempe J, Husson H (1989) Phytochemistry 28:2675

    Article  CAS  Google Scholar 

  5. Guillon S, Trémouillaux-Guiller J, Kumar Pati P, Rideau M, Gantet P (2006) Trends Biotechnol 24:403

    Article  CAS  Google Scholar 

  6. Guillon S, Tremouillaux-Guiller J, Kumar Pati P, Rideau M, Gantet P (2006) Curr Opin Plant Biol 9:341

    Article  CAS  Google Scholar 

  7. Bercetche J, Chriqui D, Adam S, David C (1987) Plant Sci 52:195

    Article  Google Scholar 

  8. Camilleri C, Jouanin L (1991) Mol Plant Microbe Interact 4:155

    Article  CAS  Google Scholar 

  9. Gamborg O, Miller R, Ojima K (1968) Exp Cell Res 50:151

    Article  CAS  Google Scholar 

  10. Mérillon JM, Doireau P, Guillot A, Chenieux JC, Rideau M (1986) Plant Cell Rep 5:23

    Article  Google Scholar 

  11. Farnsworth NR, Blomster RN, Damratoski D, Meer WA, Camarato LV (1964) Lloydia 27:302

    CAS  Google Scholar 

  12. Ayadi R, Tremouillaux-Guiller J (2003) Tree Physiol 23:713

    Article  Google Scholar 

  13. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Nature 295:432

    Article  CAS  Google Scholar 

  14. Parr AJ, Peerless ACJ, Hamill JD, Walton NJ, Robins RJ, Rhodes MJC (1988) Plant Cell Rep 7:309

    Article  CAS  Google Scholar 

  15. Shanks JV, Bhadra R, Morgan J, Rijhwani S, Vani S (1998) Biotechnol Bioeng 58:333

    Article  CAS  Google Scholar 

  16. Rijhwani SK, Shanks JV (1998) Biotechnol Prog 14:442

    Article  CAS  Google Scholar 

  17. Gantet P, Imbault N, Thiersault M, Doireau P (1998) Plant Cell Physiol 39:269

    Article  Google Scholar 

  18. Shanks JV, Morgan J (1999) Curr Opin Plant Biol 10:151

    CAS  Google Scholar 

  19. Bhadra R, Vani S, Shanks JV (1993) Biotechnol Bioeng 41:581

    Article  CAS  Google Scholar 

  20. Aerts RJ, De Luca V (1992) Plant Physiol 100:1029

    Article  CAS  Google Scholar 

  21. Vazquez-Flota F, De Luca V, Carrillo-Pech M, Canto-Flick A, de Lourdes Miranda-Ham M (2002) Mol Biotechnol 22:1

    Article  CAS  Google Scholar 

  22. Gantet P, Memelink J (2002) Trends Pharmacol Sci 23:563

    Article  CAS  Google Scholar 

  23. Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, Clastre M (2000) Biochim Biophys Acta 1517:159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guillon, S., Gantet, P., Thiersault, M., Rideau, M., Trémouillaux-Guiller, J. (2008). Hairy Roots of Catharanthus roseus: Efficient Routes to Monomeric Indole Alkaloid Production. In: Ramawat, K., Merillon, J. (eds) Bioactive Molecules and Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74603-4_15

Download citation

Publish with us

Policies and ethics