Skip to main content

A Small Eddy Correction Algorithm for the Primitive Equations of the Ocean

  • Conference paper
Mathematical Modeling, Simulation, Visualization and e-Learning
  • 1183 Accesses

Abstract

Considering the interaction between the baroclinic and barotropic flows and using the idea of the Newton iteration, a small eddy correction method is proposed for approximating and numerically solving the primitive equations of the cean. We assume that the barotropic approximation to the solution is known. Formally applying the Newton iterative procedure to the baroclinic flow equation, we then generate approximate systems. It is shown that the first step leads to the well known quasi-geostrophic equations. The convergence analysis is presented and the results show that the small eddy correction method can greatly improve the accuracy of the quasi-geostrophic approximate solution. More precisely, we prove that the approximate system derived from the procedure converges to the primitive equations of the ocean and we estimate the rate of convergence as a function of the aspect ratio of the ocean. Some numerical simulations of a wind-driven circulation problem are presented to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Belmiloudi. Asymptotic behavior for the perturbation of the primitive equations of the ocean with vertical viscosity. Canad. Appl. Math. Quart., 8(2):97-139,2000.

    MathSciNet  Google Scholar 

  2. C. Cao and E. S. Titi. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean andatmosphere dynamics. arXiv: Math. AP/0503028, 2, 2005.

    Google Scholar 

  3. J. G. Charney. Geostrophic turbulence. J. Atmos. Sci., 28:1087-1095, 1971.

    Article  Google Scholar 

  4. T. Dubois, F. Jauberteau, and R. Temam. Dynamic multilevel methods and the numerical simulation of turbulence. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  5. T. Dubois, F. Jauberteau, R. M. Temam, and J. Tribbia. Different time schemes to compute the large and small scales for the shallow water problem. J. Comp. Phys., 207:660-694, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. M. Griffies, C. Boening, F. O. Bryan, E. P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A. M. Treguier, and D. Webb. Developments in ocean climate modelling. Ocean Modell., 2:123-192, 2000.

    Article  Google Scholar 

  7. Jack K. Hale. Asymptotic behavior of dissipative systems, Vol. 25. American Mathematical Society, Providence, RI, mathematical surveys and monographs edition, 1988.

    Google Scholar 

  8. G. J. Haltiner and R. T. Williams. Numerical prediction and dynamic meteorology. Wiley, New York, 1980.

    Google Scholar 

  9. W. R. Holland. The role of mesoscale eddies in the general circulation of the ocean. J. Phys. Oceanogr., 8:363-392, 1978.

    Article  MathSciNet  Google Scholar 

  10. W. R. Holland and P. B. Rhines. An example of eddy-induced ocean circulation. J. Phys. Oceanogr., 10:1010-1031, 1980.

    Article  Google Scholar 

  11. Y. Hou and K. Li. A small eddy correction method for nonlinear dissipative evolutionary equations. SIAM J. Numer. Anal., 41(3):1101-1130, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Hu, R. Temam, and M. Ziane. The primitive equations of the large scale ocean under the small depth hypothesis. Discrete Contin. Dyn. Syst., 9(1):97-131,2003.

    MATH  MathSciNet  Google Scholar 

  13. F. Jauberteau, C. Rosier, and R. Temam. The nonlinear Galerkin method in computational fluid dynamic. Appl. Numer. Math., 6(5):361-370, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. M. Kobelkov. Existence of a solution ‘in the large’ for the 3d large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris, 343:283-286, 2006.

    MATH  MathSciNet  Google Scholar 

  15. I. Kukavica and M. Ziane. On the regularity of the primitive equations of the ocean. To appear.

    Google Scholar 

  16. J. L. Lions, R. Temam, and S. Wang. On the equations of large-scale ocean. Nonlinearity, 5:1007-1053, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. L. Lions, R. Temam, and S. Wang. Models of the coupled atmosphere and ocean (CAO I). Comput. Mech. Adv., 1:3-54, 1993.

    MATH  MathSciNet  Google Scholar 

  18. J. L. Lions, R. Temam, and S. Wang. Numerical analysis of the coupled atmosphere and ocean models (CAOII). Comput. Mech. Adv., 1:55-120, 1993.

    MATH  MathSciNet  Google Scholar 

  19. M. Marion and R. Temam. Nonlinear Galerkin methods. SIAM J. Numer. Anal., 26(5):1139-1157, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Marion and R. Temam. Nonlinear Galerkin methods: the finite elements case. Numer. Math., 57(3):205-226, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Di Martino and P. Orenga. Resolution to a three-dimensional physical oceanographic problem using the non-linear Galerkin method. Int. J. Num. Meth. Fluids, 30:577-606, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Petcu, R. Temam, and M. Ziane. Some Mathematical Problems in Geophysical Fluid Dynamics, 2008.

    Google Scholar 

  23. G. R. Sell and Y. You. Dynamics of evolutionary equations, Vol. 143. Springer, New York, Applied Mathematical Sciences edition, 2002.

    MATH  Google Scholar 

  24. E. Simmonet, T. Tachim Medjo, and R. Temam. Barotropic-baroclinic formulation of the primitive equations of the ocean. Appl. Anal., 82(5):439-456, 2003.

    MathSciNet  Google Scholar 

  25. E. Simmonet, T. Tachim Medjo, and R. Temam. On the order of magnitude of the baroclinic flow in the primitive equations of the ocean. Ann. Mat. Pura Appl., 185, 2006, S293-S313.

    Article  Google Scholar 

  26. R. Temam. Infinite dimensional dynamical systems in mechanics and physics, Vol. 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1988.

    MATH  Google Scholar 

  27. R. Temam. Stability analysis of the nonlinear Galerkin method. Math. Comp., 57(196):477-505, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Temam and M. Ziane. Some mathematical problems in geophysical fluid dynamics. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Dynamics, Vol. 3, pages 535-658. Elsevier, 2004.

    Google Scholar 

  29. W. M. Washington and C. L. Parkinson. An Introduction to Three-Dimensional Climate Modeling. Oxford University Press, Oxford, 1986.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medjo, T.T., Temam, R. (2008). A Small Eddy Correction Algorithm for the Primitive Equations of the Ocean. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_8

Download citation

Publish with us

Policies and ethics