Skip to main content

Steroid Receptors, Stem Cells and Proliferation in the Human Breast

  • Conference paper
  • 344 Accesses

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

Abstract

This review summarises the current evidence for adult tissue stem cells in the human breast and examines the role of stemcells, steroids and self-renewal signalling pathways in normal human breast development. The development of the mammary gland is a complex and lengthy process, beginning during embryogenesis and not reaching full functionality until pregnancy and lactation. The gland goes through massive apoptosis and remodelling at the cessation of weaning to resemble once again the non-pregnant gland. The staged and cyclic development of the mammary gland is controlled by ovarian steroids, and it is thought to only be possible due to the presence of adult stem cells. Adult stem cells are self-renewing cells that give rise to all of the functional, differentiated cells of the tissue/organ. The process of self-renewal and stem cell maintenance is tightly controlled and thought to be regulated by signalling, such as through the Notch receptor pathway. Long-livedself-renewing stemcells are thought tobe the targetsof the accumulated mutations that lead to cancer. To fully determine the role of these cells and their signalling in cancer, it is important to first elucidate their function in normal breast development. A great deal of research has now been carried out into the identification and isolation of normal mammary stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan GJ, Beattie J, Flint DJ (2004) The role of IGFBP-5 in mammary gland development and involution. Domest Anim Endocrinol, 2004. 27:257–266

    Article  PubMed  CAS  Google Scholar 

  • Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5:R1–8

    Article  PubMed  Google Scholar 

  • Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, Visvader JE, Lindeman GJ (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D (2003) Hematopoietic stem cells. Birth Defects Res C Embryo Today 69:219–229

    Article  PubMed  CAS  Google Scholar 

  • Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA (1998) A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA 95:5076–5081

    Article  PubMed  CAS  Google Scholar 

  • Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K, Honjo T, Hennighausen L (2006) The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 293:565–580

    Article  PubMed  CAS  Google Scholar 

  • Callahan R, Egan SE (2004) Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 9:145–163

    Article  PubMed  Google Scholar 

  • Chepko G, Smith GH (1997) Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 29:239–253

    Article  PubMed  CAS  Google Scholar 

  • Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    PubMed  CAS  Google Scholar 

  • Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456

    Article  PubMed  CAS  Google Scholar 

  • Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297:444–460

    Article  PubMed  CAS  Google Scholar 

  • Coleman S, Silberstein GB, Daniel CW (1988) Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 127:304–315

    Article  PubMed  CAS  Google Scholar 

  • Daniel CW, Young LJ (1971) Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propogation in vivo. Exp Cell Res 65:27–32

    Article  PubMed  CAS  Google Scholar 

  • Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4:3–8

    Article  PubMed  CAS  Google Scholar 

  • Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47:6052–6057

    PubMed  CAS  Google Scholar 

  • de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, Nakano T, Honjo T, Mak TW, Rossant J, Conlon RA (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139–1148

    PubMed  Google Scholar 

  • DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520

    PubMed  CAS  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–615

    Article  PubMed  CAS  Google Scholar 

  • Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH (2005) Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am J Pathol 167:409–417

    PubMed  CAS  Google Scholar 

  • Farnie G, Clarke RB, Spence K, Brennan KR, Anderson N, Bundred NJ (2007) Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and EGF receptor signaling pathways. J Natl Cancer Inst. 99:616–627

    Article  PubMed  CAS  Google Scholar 

  • Furth PA, Bar-Peled U, Li M (1997) Apoptosis and mammary gland involution: reviewing the process. Apoptosis 2:19–24

    Article  PubMed  CAS  Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H, Marks DF, Demaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that haematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med 3:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Hicks C, Ladi E, Lindsell C, Hsieh JJ, Hayward SD, Collazo A, Weinmaster G (2002) A secreted Delta1-Fc fusion protein functions both as an activator and inhibitor of Notch1 signalling. J Neuro Res 68:655–667

    Article  CAS  Google Scholar 

  • Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7:17–38

    Article  PubMed  Google Scholar 

  • Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M, Okano H (2001) The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 21:3888–3900

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Lemischka IR (1990) Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev 4:220–232

    Article  PubMed  CAS  Google Scholar 

  • Keeling JW, Ozer E, King G, Walker F (2000) Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol 191:449–451

    Article  PubMed  CAS  Google Scholar 

  • Kopan R (2002) Notch: a membrane-bound transcription factor. J Cell Sci 115:1095–1097

    PubMed  CAS  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930

    PubMed  CAS  Google Scholar 

  • Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131(5):965-973

    Article  PubMed  CAS  Google Scholar 

  • Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 101:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750

    PubMed  CAS  Google Scholar 

  • Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signalling through the epithelial estorgen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 103:2196–2201

    Article  PubMed  CAS  Google Scholar 

  • Mayhall EA, Paffett-Lugassy N, Zon LI (2004) The clinical potential of stem cells. Curr Opin Cell Biol 16:713–720

    Article  PubMed  CAS  Google Scholar 

  • Morgan T (1917) The theory of a gene. Am Nat 51:513–544

    Article  Google Scholar 

  • Morrison SJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5:197–206

    Article  PubMed  CAS  Google Scholar 

  • Naccarato AG, Viacava P, Vignati S, Fanelli G, Bonadio AG, Montruccoli G, Bevilacqua G (2000) Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch 436:431–438

    Article  PubMed  CAS  Google Scholar 

  • Nichols JT, Miyamoto A, Olsen SL, D’Souza B, Yao C, Weinmaster G (2007) DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol 176:445–458

    Article  PubMed  CAS  Google Scholar 

  • Peterson OW, Høyer PE, van Deurs B (1987) Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res 47:5748–5751

    Google Scholar 

  • Politi K, Feirt N, Kitajewski J (2004) Notch in mammary gland development and breast cancer. Semin Cancer Biol 14:341–347

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Ross DA, Rao PK, Kadesch T (2004) Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Mol Cell Biol 24:3505–3513

    Article  PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physio 62:327–336

    Article  CAS  Google Scholar 

  • Smith GH, Medina D (1988) A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 90:173–183

    PubMed  Google Scholar 

  • Smith CA, Monaghan P, Neville AM (1984) Basal clear cells of the normal breast. Virchows Arch A Pathol Anat Histopathol 402:319–329

    Article  PubMed  CAS  Google Scholar 

  • Smith GH, Strickland P, Daniel CW, Daniel CW (2002) Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res 310:313–320

    Article  PubMed  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Vogel PM, Georgiade NG, Fetter BF, Vogel FS, McCarty KS (1981) The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol 104:23–34

    PubMed  CAS  Google Scholar 

  • Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1 (pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    Article  PubMed  CAS  Google Scholar 

  • Welm BE, Freeman KW, Chen M, Contreras A, Spencer DM, Rosen JM (2002) Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol 157:703–714

    Article  PubMed  CAS  Google Scholar 

  • Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB (2006) Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr Relat Cancer 13:617–628

    Article  PubMed  CAS  Google Scholar 

  • Woodward TL, Xie, JW, Haslam SZ (1998) The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J Mammary Gland Biol Neoplasia 3:117–131

    Article  PubMed  CAS  Google Scholar 

  • Zeps N, Bentel JM, Papadimitriou JM, D’Antuono MF, Dawkins HJ (1998) Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62:221–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, H., Lamb, R., Clarke, R. (2008). Steroid Receptors, Stem Cells and Proliferation in the Human Breast . In: Melmed, S., Rochefort, H., Chanson, P., Christen, Y. (eds) Hormonal Control of Cell Cycle. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73855-8_11

Download citation

Publish with us

Policies and ethics