Skip to main content

Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

This chapter discusses the effects of many-electron interactions in thephotophysics of nanotubes and their consequences on measured properties. The basictheory and key physical differences between two common types of electronicexcitations are developed: single-particle excitations (quasiparticles) measured intransport or photoemission experiments, and electron–hole pair excitations (excitonicstates) measured in optical experiments. We show, through first-principlescalculations, that both quasiparticle and excitonic effects are crucial in understandingthe optical response of the carbon nanotubes. These effects change qualitatively thenature of the photoexcited states, leading to extraordinarily strongly boundexcitons in both semiconducting and metallic nanotubes and explaining theso-called “ratio problem” in carbon-nanotube spectroscopy. Using simplifiedmodels parameterized by the first-principles results, the diameter and familydependences of the exciton properties in carbon nanotubes are further elucidated.We also analyze the symmetries of excitons and their selection rules forone- and two-photon spectroscopy. A method for calculating the radiativelifetime of excitons in carbon nanotubes is also described. In addition, webriefly discuss the effects of pressure and temperature on optical transitions.Finally, we show that many-electron effects are equally dominant in theexcitation spectra of other quasi-one-dimensional systems, including theboron-nitride nanotubes, semiconductor nanowires, and graphene nanoribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, J. Jiang, N. Kobayashi, A. Gruneis, R. Saito: Resonance {R}aman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075401 (2005)

    Article  Google Scholar 

  • S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)

    Article  Google Scholar 

  • T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997)

    Article  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Excitonic effects and the optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 92, 077402 (2004)

    Article  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes, Appl. Phys. A-Mater. 78, 1129 (2004)

    Article  Google Scholar 

  • E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab-initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005)

    Article  Google Scholar 

  • J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402(R) (2005)

    Article  Google Scholar 

  • S. G. Louie: Predicting materials and properties: Theory of the ground and excited state, in S. G. Louie, M. L. Cohen (Eds.): Conceptual Foundations of Materials: A Standard Model for Ground- and Excited-State Properties (Elsevier, Amsterdam 2006) p. 9

    Chapter  Google Scholar 

  • P. Hohenberg, W. Kohn: Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  • W. Kohn, L. J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  • J. P. Perdew, W. Yue: Accurate and simple density functional for the electronic exchange energy – {G}eneralized gradient approximation, Phys. Rev. B 33, 8800 (1986)

    Article  Google Scholar 

  • J. P. Perdew, Y. Wang: Correlation hole of the spin-polarized electron gas, with small-wave-vector and high-density scaling, Phys. Rev. B 44, 13298 (1991)

    Article  Google Scholar 

  • J. P. Perdew, K. Burke, M. Ernzerhof: Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  • M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos: Iterative minimization techniques for ab-initio total-energy calculations – molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  • S. Lundqvist, N. H. March (Eds.): Theory of the Inhomogeneous Electron Gas (Plenum, N.Y. 1983) see the references therein

    Google Scholar 

  • M. S. Hybertsen, S. G. Louie: Electron correlation in semiconductors and insulators – {B}and-gaps and quasi-particle energies, Phys. Rev. B 34, 5390 (1986)

    Article  Google Scholar 

  • L. Hedin: New method for calculating 1-particle {G}reen's function with application to electron-gas problem, Phys. Rev. 139, A796 (1965)

    Article  Google Scholar 

  • G. Strinati: Dynamical shift and broadening of core excitons in semiconducotrs, prl 49, 1519 (1982)

    Article  Google Scholar 

  • G. Strinati: Effects of dynamical screening on resonances at inner-shell thresholds in semiconductors, Phys. Rev. B 29, 5718 (1984)

    Article  Google Scholar 

  • G. Strinati: Application of the {G}reen's-functions method to the study of the optical-properties of semiconductors, Riv. Nuovo Cimento 11, 1 (1988)

    Article  Google Scholar 

  • S. Albrecht, L. Reining, R. D. Sole, G. Onida: Ab-initio calculation of excitonic effects in the optical spectra of semiconductors, Phys. Rev. Lett. 80, 4510 (1998)

    Article  Google Scholar 

  • L. X. Benedict, E. L. Shirley, R. B. Bohn: Optical absorption of insulators and electron-hole interaction: An ab-initio calculation, Phys. Rev. Lett. 80, 4514 (1998)

    Article  Google Scholar 

  • M. Rohlfing, S. G. Louie: Electron-hole excitations in semiconductors and insulators, Phys. Rev. Lett. 81, 2312 (1998)

    Article  Google Scholar 

  • M. Rohlfing, S. G. Louie: Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000)

    Article  Google Scholar 

  • C.-H. Park, C. D. Spataru, S. G. Louie: Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes, Phys. Rev. Lett. 96, 126105 (2006)

    Article  Google Scholar 

  • G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz, L. E. Brus: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314 (2005)

    Article  Google Scholar 

  • Y.-Z. Ma, C. D. Spataru, L. Valkunas, S. G. Louie, G. R. Fleming: Spectroscopy of zigzag single-walled carbon nanotubes: Comparing femtosecond transient absorption spectra with ab-initio calculations, Phys. Rev. B 74, 085402 (2006)

    Article  Google Scholar 

  • J. Deslippe, C. D. Spataru, D. Prendergast, S. G. Louie: Bound excitons in metallic single-walled carbon nanotubes, Nano Lett. 7, 1626 (2007)

    Article  Google Scholar 

  • S. G. Louie: in C. Y. Fong (Ed.): Topics in Computational Materials Science (World Scientific, Singapore 1997) p. 96

    Google Scholar 

  • Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, S. Tsuda: Polarized absorption spectra of single-walled 4 angstrom carbon nanotubes aligned in channels of an {AlPO}4-5 single crystal, Phys. Rev. Lett. 87, 127401 (2001)

    Article  Google Scholar 

  • C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, M. A. Pimenta: Optical transition energies for carbon nanotubes from resonant {R}aman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93, 147406 (2004)

    Article  Google Scholar 

  • H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen: Chirality distribution and transition energies of carbon nanotubes, Phys. Rev. Lett. 93, 177401 (2004)

    Article  Google Scholar 

  • R. B. Capaz, C. D. Spataru, S. Ismail-Beigi, S. G. Louie: Diameter and chirality dependence of exciton properties in carbon nanotubes, Phys. Rev. B 74, 121401 (2006)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004)

    Article  Google Scholar 

  • K. Ohno: Some remarks on the {P}ariser–{P}arr–{P}ople method, Theor. Chim. Acta 2, 219 (1964)

    Article  Google Scholar 

  • E. B. Barros, R. B. Capaz, A. Jorio, G. G. Samsonidze, A. G. Souza, S. Ismail-Beigi, C. D. Spataru, S. G. Louie, G. Dresselhaus, M. S. Dresselhaus: Selection rules for one- and two-photon absorption by excitons in carbon nanotubes, Phys. Rev. B 73, 241406 (2006)

    Article  Google Scholar 

  • E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. Souza, J. Mendes, G. Dresselhaus, M. S. Dresselhaus: Review on the symmetry-related properties of carbon nanotubes, Phys. Rep. 431, 261 (2006)

    Article  Google Scholar 

  • M. Damnjanovi\'c, I. Milosevic, T. Vukovic, R. Sredanovic: Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes, Phys. Rev. B 60, 2728 (1999)

    Article  Google Scholar 

  • M. Damnjanovi\'c, T. Vukovic, I. Milosevic: Modified group projectors: {T}ight-binding method, J. Phys. A 33, 6561 (2000)

    Article  Google Scholar 

  • R. Loudon: One-dimensional hydrogen atom, Am. J. Phys. 27, 649 (1959)

    Article  Google Scholar 

  • R. S. Knox: Theory of Excitons, Solid State Physics 5 (Academic, N.Y. 1963)

    Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, S. G. Louie: Theory and ab-initio calculation of radiative lifetime of excitons in semiconducting nanotubes, Phys. Rev. Lett. 95, 247402 (2005)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495 (2005)

    Article  Google Scholar 

  • A. Hagen, G. Moos, V. Talalaev, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A 78, 1137 (2004)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes, Phys. Rev. Lett. 92, 177401 (2004)

    Article  Google Scholar 

  • A. Hagen, M. Steiner, M. B. Raschke, C. Lineau, T. Hertel, H. H. Qian, A. J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005)

    Article  Google Scholar 

  • I. B. Mortimer, R. J. Nicholas: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes, Phys. Rev. Lett. 98, 027404 (2007)

    Article  Google Scholar 

  • J. Shaver, J. Kono, O. Portugall, V. Krstic, G. L. J. A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking, URL: cond-mat/0702036 arXiv

    Google Scholar 

  • L. Yang, M. P. Anantram, J. Han, J. P. Lu: Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Phys. Rev. B 60, 13874 (1999)

    Article  Google Scholar 

  • Y. N. Gartstein, A. A. Zakhidov, R. H. Baughman: Mechanical and electromechanical coupling in carbon nanotube distortions, Phys. Rev. B 68, 115415 (2003)

    Article  Google Scholar 

  • R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie: Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes, Phys. Stat. Sol. B 241, 3352 (2004)

    Article  Google Scholar 

  • S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, M. Tinkham: Resonant {R}aman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain, Phys. Rev. B 72, 035425 (2005)

    Article  Google Scholar 

  • A. G. Souza, N. Kobayashi, J. Jiang, A. Gruneis, R. Saito, S. B. Cronin, J. Mendes, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus: Strain-induced interference effects on the resonance {R}aman cross section of carbon nanotubes, Phys. Rev. Lett. 95, 217403 (2005)

    Article  Google Scholar 

  • R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie: Temperature dependence of the band gap of semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 036801 (2005)

    Article  Google Scholar 

  • S. B. Cronin, Y. Yin, A. Walsh, R. B. Capaz, A. Stolyarov, P. Tangney, M. L. Cohen, S. G. Louie, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. Tinkham: Temperature dependence of the optical transition energies of carbon nanotubes: The role of electron-phonon coupling and thermal expansion, Phys. Rev. Lett. 96, 127403 (2006)

    Article  Google Scholar 

  • J. Wu, W. Walukiewicz, W. Shan, E. Bourret-Courchesne, J. W. Ager, K. M. Yu, E. E. Haller, K. Kissell, S. M. Bachilo, R. B. Weisman, R. E. Smalley: Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes, Phys. Rev. Lett. 93, 017404 (2004)

    Article  Google Scholar 

  • L. J. Li, R. J. Nicholas, R. S. Deacon, P. A. Shields: Chirality assignment of single-walled carbon nanotubes with strain, Phys. Rev. Lett. 93, 156104 (2004)

    Article  Google Scholar 

  • J. Lefebvre, P. Finnie, Y. Homma: Temperature-dependent photoluminescence from single-walled carbon nanotubes, Phys. Rev. B 70, 045419 (2004)

    Article  Google Scholar 

  • R. S. Deacon, K.-C. Chuang, J. Doig, I. B. Mortimer, R. J. Nicholas: Photoluminescence study of aqueous-surfactant-wrapped single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. B 74, 201402 (2006)

    Article  Google Scholar 

  • D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben, A. Mascarenhas: Intrinsic and extrinsic effects in the temperature-dependent photoluminescence of semiconducting carbon nanotubes, Phys. Rev. Lett. 96, 106805 (2006)

    Article  Google Scholar 

  • R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie: Family behavior of the pressure and temperature dependences of the band gap of semiconducting carbon nanotubes, in XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials, Proc. AIP 786 (2005) p. 411

    Google Scholar 

  • R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex: Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes, Phys. Rev. Lett. 95, 127601 (2005)

    Article  Google Scholar 

  • J. S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, E. Rosencher, L. Goux-Capes: Optical transitions in single-wall boron nitride nanotubes, Phys. Rev. Lett. 94, 037405 (2005)

    Article  Google Scholar 

  • L. Yang, C. D. Spataru, S. G. Louie, M. Y. Chou: Enhanced electron-hole interaction and optical absorption in a silicon nanowire, Phys. Rev. B 75, 201304 (2007)

    Article  Google Scholar 

  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov: Two-dimensional gas of massless {D}irac fermions in graphene, Nature 438, 197 (2005)

    Article  Google Scholar 

  • Y. B. Zhang, Y. W. Tan, H. L. Stormer, P. Kim: Experimental observation of the quantum {H}all effect and {B}erry's phase in graphene, Nature 438, 201 (2005)

    Article  Google Scholar 

  • M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  Google Scholar 

  • K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996)

    Article  Google Scholar 

  • K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist: Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59, 8271 (1999)

    Article  Google Scholar 

  • M. Ezawa: Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73, 045432 (2006)

    Article  Google Scholar 

  • L. Brey, H. A. Fertig: Electronic states of graphene nanoribbons studied with the {D}irac equation, Phys. Rev. B 73, 235411 (2006)

    Article  Google Scholar 

  • K.-I. Sasaki, S. Murakami, R. Saito: Gauge field for edge state in graphene, J. Phys. Soc. Jpn 75, 074713 (2006)

    Article  Google Scholar 

  • D. A. Abanin, P. A. Lee, L. S. Levitov: Spin-filtered edge states and quantum hall effect in graphene, Phys. Rev. Lett. 96, 176803 (2006)

    Article  Google Scholar 

  • S. Okada, A. Oshiyama: Magnetic ordering in hexagonally bonded sheets with first-row elements, Phys. Rev. Lett. 87, 146803 (2001)

    Article  Google Scholar 

  • H. Lee, Y. W. Son, N. Park, S. W. Han, J. J. Yu: Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states, Phys. Rev. B 72, 174431 (2005)

    Article  Google Scholar 

  • Y. Miyamoto, K. Nakada, M. Fujita: First-principles study of edge states of {H}-terminated graphitic ribbons, Phys. Rev. B 59, 9858 (1999)

    Article  Google Scholar 

  • T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities, Phys. Rev. B 62, R16349 (2000)

    Article  Google Scholar 

  • Y.-W. Son, M. L. Cohen, S. G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)

    Article  Google Scholar 

  • Y.-W. Son, M. L. Cohen, S. G. Louie: Half-metallic graphene nanoribbons, Nature (London) 444, 347 (2006)

    Article  Google Scholar 

  • V. Barone, O. Hod, G. E. Scuseria: Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6, 2748 (2006)

    Article  Google Scholar 

  • L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, S. G. Louie: Quasiparticle energies and band gaps of graphene nanoribbons, Phys. Rev. Lett. accepted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin D. Spataru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spataru, C.D., Ismail-Beigi, S., Capaz, R.B., Louie, S.G. (2007). Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_6

Download citation

Publish with us

Policies and ethics