Skip to main content

Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

Ever since the discovery of carbon nanotubes (CNTs) in the early 1990s, it wasanticipated that these nanostructures would have truly remarkable mechanical andheat-transport properties, given the strength of the carbon-carbon bond withingraphene layers in graphite. Nowadays, there is growing evidence, coming fromboth experimental and theoretical studies, that CNTs do indeed have anoutstandingly high Young’s modulus, high thermal stability and thermalconductivity. In this contribution, we provide an overview of the current stateof knowledge on these properties in CNTs and related nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun'ko: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44, 1624 (2006)

    Article  Google Scholar 

  • R. Tenne: Inorganic nanotubes and fullerene-like nanoparticles, Nature Nanotechnol. 1, 103 (2006)

    Article  Google Scholar 

  • A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature London 424, 408 (2003)

    Article  Google Scholar 

  • T. Iwai, H. Shioya, D. Kondo, S. Hirose, A. Kawabata, S. Sato, M. Nihei, T. Kikkawa, K. Joshin, Y. Awano, N. Yokoyama: Thermal and source bumps utilizing carbon nanotubes for flip-chip high power amplifiers, IEEE IEDM Tech. Digest 257 (2005)

    Google Scholar 

  • L. D. Landau, E. M. Lifshitz: Theory of Elasticity (Pergamon, Oxford 1986)

    Google Scholar 

  • B. I. Yakobson, P. Avouris: in M. Dresselhaus, G. E. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, Synthesis, Structure, Properties and Applications, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2001) pp. 287–328

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E. Hernández: Electronic, thermal and mechanical properties of carbon nanotubes, Philos. Trans. R. Soc. Lond. A 362, 2065 (2004)

    Article  Google Scholar 

  • J. P. Salvetat, S. Bhattacharyya, R. B. Pipes: Progress on mechanics of carbon nanotubes and derived materials, J. Nanosci. Nanotechnol. 6, 1857 (2006)

    Article  Google Scholar 

  • S. Reich, C. Thomsen, J. Maultzsch: Carbon Nanotubes, Basic Concepts and Physical Properties (Wiley-VCH 2004)

    Google Scholar 

  • J. Hone: in M. Dresselhaus, G. E. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, Synthesis, Structure, Properties and Applications, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2001) pp. 287–328

    Google Scholar 

  • D. H. Robertson, D. W. Brenner, J. W. Mintmire: Progress on mechanics of carbon nanotubes and derived materials, Phys. Rev. B 45, 12592 (1992)

    Article  Google Scholar 

  • D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejόn: Ab initio structural, elastic and vibrational properties of carbon nanotubes, Phys. Rev. B 59, 12678 (1999)

    Article  Google Scholar 

  • J. Tersoff: New empirical-approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988)

    Article  Google Scholar 

  • D. W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990)

    Article  Google Scholar 

  • G. G. Tibbets: Why are carbon filaments tubular, J. Cryst. Growth 66, 632 (1983)

    Article  Google Scholar 

  • B. T. Kelly: Physics of Graphite (Applied Science, London 1981)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg: Graphite Fibers and Filaments (Springer, Berlin, Heidelberg 1988)

    Book  Google Scholar 

  • M. M. Treacy, T. W. Ebbesen, J. M. Gibson: Exceptionally high {Y}oung's modulus observed for individual carbon nanotubes, Nature (London) 381, 678 (1996)

    Article  Google Scholar 

  • A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy: Young's modulus of single-walled nanotubes, Phys. Rev. B 58, 14013 (1998)

    Article  Google Scholar 

  • N. G. Chopra, A. Zettl: Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Commun. 105, 297 (1998)

    Article  Google Scholar 

  • E. W. Wong, P. E. Sheehan, C. M. Lieber: Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes, Science 277, 1971 (1997)

    Article  Google Scholar 

  • M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature (London) 389, 582 (1997)

    Article  Google Scholar 

  • J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stoeckli, N. A. Burnham, L. Forrό: Elastic and shear moduli of singlewalled carbon nanotube ropes, Phys. Rev. Lett. 82, 944 (1999)

    Article  Google Scholar 

  • J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stoeckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, L. Forrό: Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater. 11, 161 (1999)

    Article  Google Scholar 

  • A. Kis, G. Csányi, J. P. Salvetat, T. N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, L. Forrό: Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nature Mater. 3, 153 (2004)

    Article  Google Scholar 

  • B. I. Yakobson, C. J. Brabec, J. Bernholc: Nanomechanics of carbon tubes: instabilities beyond linear regime, Phys. Rev. Lett. 76, 2511 (1996)

    Article  Google Scholar 

  • S. Iijima, C. J. Brabec, A. Maiti, J. Bernholc: Structural flexibility of carbon nanotubes, J. Chem. Phys. 104, 2089 (1996)

    Article  Google Scholar 

  • J. P. Lu: Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297 (1997)

    Article  Google Scholar 

  • E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of {C} and {B}x{C}y{N}z composite nanotubes, Phys. Rev. Lett. 80, 4502 (1998)

    Article  Google Scholar 

  • E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of singlewall nanotubes, Appl. Phys. A 68, 287 (1999)

    Google Scholar 

  • D. Porezag, T. Frauenheim, T. Koehler, G. Seifert, R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B 51, 12947 (1995)

    Article  Google Scholar 

  • J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejόn, D. Sánchez-Portal: The {SIESTA} method for ab initio order-n materials simulation, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  • M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637 (2000)

    Article  Google Scholar 

  • M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552 (2000)

    Article  Google Scholar 

  • J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, Z. F. Ren: Superplastic carbon nanotubes, Nature (London) 439, 281 (2006)

    Article  Google Scholar 

  • J. Y. Huang, S. Chen, Z. F. Ren, Z. Q. Wang, D. Z. Wang, M. Vaziri, Z. Suo, G. Chen, M. S. Dresselhaus: Kink formation and motion in carbon nanotubes at high temperatures, Phys. Rev. Lett. 97, 075501 (2006)

    Article  Google Scholar 

  • B. I. Yakobson: in Proceedings of the Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, vol. 97 (Electrochem. Soc., Pennington 1997) p. 549

    Google Scholar 

  • B. I. Yakobson: Mechanical relaxation and intramolecular plasticity in carbon nanotubes, Appl. Phys. Lett. 72, 918 (1998)

    Article  Google Scholar 

  • M. B. Nardelli, B. I. Yakobson, J. Bernholc: Mechanism of strain release in carbon nanotubes, Phys. Rev. B 57, R4277 (1998)

    Article  Google Scholar 

  • M. B. Nardelli, B. I. Yakobson, J. Bernholc: Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett. 81, 4656 (1998)

    Article  Google Scholar 

  • A. J. Stone, D. J. Wales: Theoretical studies of icosahedral {C}60 and some related species, Chem. Phys. Lett. 128, 501 (1986)

    Article  Google Scholar 

  • T. Dumitric\v{a}, T. Belytschko, B. I. Yakobson: Bond-breaking bifurcation states in carbon nanotube fracture, J. Chem. Phys. 118, 9485 (2003)

    Article  Google Scholar 

  • T. Dumitric\v{a}, M. Hua, B. I. Yakobson: Symmetry, time and temperature dependent strength of carbon nanotubes, PNAS 103, 6105 (2006)

    Article  Google Scholar 

  • F. Ding, K. Jiao, M. Wu, B. I. Yakobson: Pseudoclimb and dislocation dynamics in superplastic nanotubes, Phys. Rev. Lett. 98, 075503 (2007)

    Article  Google Scholar 

  • B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated {C}60 in carbon nanotubes, Nature (London) 396, 323 (1998)

    Article  Google Scholar 

  • B. W. Smith, D. E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis, Chem. Phys. Lett. 321, 169 (2000)

    Article  Google Scholar 

  • S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in sigle-wall carbon nanotubes, Chem. Phys. Lett. 337, 48 (2001)

    Article  Google Scholar 

  • E. Hernández, V. Meunier, B. W. Smith, R. Rurali, H. Terrones, M. B. Nardelli, M. Terrones, D. E. Luzzi, J.-C. Charlier: Fullerene coalescence in nanopeapods: a path to novel tubular carbon, Nano Lett. 3, 1037 (2003)

    Article  Google Scholar 

  • M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, P. M. Ajayan: Coalescence of single-walled carbon nanotubes, Science 288, 1226 (2000)

    Article  Google Scholar 

  • M. J. Lόpez, A. Rubio, J. A. Alonso, S. Lefrant, K. Méténier, S. Bonnamy: Patching and tearing single-wall carbon nanotube ropes into multiwall carbon nanotubes, Phys. Rev. Lett. 89, 255501 (2002)

    Article  Google Scholar 

  • M. Yoon, S. Han, G. Kim, S. B. Lee, S. Berber, E. Osawa, J. Ihm, M. Terrones, F. Banhart, J.-C. Charlier, N. Grobert, H. Terrones, P. M. Ajayan, D. Tománek: Zipper mechanism for nanotube fusion: theory and experiment, Phys. Rev. Lett. 92, 075504 (2004)

    Article  Google Scholar 

  • M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, P. M. Ajayan: Molecular junctions by joining single-walled carbon nanotubes, Phys. Rev. Lett. 89, 075505 (2002)

    Article  Google Scholar 

  • Y. F. Zhao, B. I. Yakobson, R. E. Smalley: Dynamic topology of fullerene coalescence, Phys. Rev. Lett. 88, 185501 (2002)

    Article  Google Scholar 

  • Y. F. Zhao, R. E. Smalley, B. I. Yakobson: Coalescence of fullerene cages: topology, energetics and molecular dynamics simulation, Phys. Rev. B 66, 195409 (2002)

    Article  Google Scholar 

  • U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, P. C. Eklund: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure, Phys. Rev. B 59, 10928 (1999)

    Article  Google Scholar 

  • S. Reich, C. Thomsen, P. Ordejόn: Elastic properties of carbon nanotubes under hydrostatic pressure, Phys. Rev. B 65, 153407 (2004)

    Article  Google Scholar 

  • S. Reich, C. Thomsen, P. Ordejόn: Elastic properties and pressure-induced phase transitions of single-walled carbon nanotubes, Phys. Stat. Sol. B 235, 354 (2003)

    Article  Google Scholar 

  • X. H. Zhang, D. Y. Sun, Z. F. Liu, X. G. Gong: Structure and phase transitions of single-wall carbon nanotube bundles under hydrostatic pressure, Phys. Rev. B 70, 035422 (2004)

    Article  Google Scholar 

  • S. E. Baltazar, A. H. Romero, J. L. Rodríguez, R. Martoňák, J. Phys.: Finite singlewall capped carbon nanotubes under hydrostatic pressure, Condens. Matter 18, 9119 (2006)

    Article  Google Scholar 

  • J. Cumings, A. Zettl: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602 (2000)

    Article  Google Scholar 

  • Q. Zheng, Q. Jiang: Multiwalled carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett. 88, 045503 (2002)

    Article  Google Scholar 

  • S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, D. S. Galv{\~a}o: Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett. 90, 055504 (2003)

    Article  Google Scholar 

  • W. Guo, Y. Guo, H. Gao, Q. Zheng, W. Zhong: Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes, Phys. Rev. Lett. 91, 125501 (2003)

    Article  Google Scholar 

  • Y. Zhao, C. Ma, G. Hua, Q. Jiang: Energy dissipation mechanisms in carbon nanotube oscillators, Phys. Rev. Lett. 91, 175504 (2003)

    Article  Google Scholar 

  • J. Servantie, P. Gaspard: Methods of calculation of a friction coefficient: application to nanotubes, Phys. Rev. Lett. 91, 185593 (2003)

    Article  Google Scholar 

  • J. Servantie, P. Gaspard: Translational dynamics and friction in doublewalled carbon nanotubes, Phys. Rev. B 73, 125428 (2006)

    Article  Google Scholar 

  • P. Tangney, S. G. Louie, M. L. Cohen: Dynamic sliding friction between concentric carbon nanotubes, Phys. Rev. Lett. 93, 065503 (2004)

    Article  Google Scholar 

  • P. Tangney, M. L. Cohen, S. G. Louie: Giant wave-drag enhancement of friction in sliding carbon nanotubes, Phys. Rev. Lett. 97, 195901 (2006)

    Article  Google Scholar 

  • S. Berber, Y.-K. Kwon, D. Tom{\' a}nek: Unusally high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613 (2000)

    Article  Google Scholar 

  • J. Hone, M. Whitney, C. Piskoti, A. Zettl: Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59, R2514 (1999)

    Article  Google Scholar 

  • C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar: Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5, 1842 (2005)

    Article  Google Scholar 

  • N. Mingo, D. A. Broido: Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95, 096105 (2005)

    Article  Google Scholar 

  • W. Yu, L. Lu, Z. Dian-lin, Z. W. Pan, S. Xie: Linear specific heat of carbon nanotubes, Phys. Rev. B 59, R9015 (1999)

    Article  Google Scholar 

  • R. E. Peierls: Quantum Theory of Solid (Oxford University Press, New York 1955)

    Google Scholar 

  • L. G. C. Rego, G. Kirczenow: Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett 81, 232 (1998)

    Article  Google Scholar 

  • T. Yamamoto, S. Watanabe, K. Watanabe: Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92, 075502 (2004)

    Article  Google Scholar 

  • T. Yamamoto, K. Watanabe: Nonequilibrium {G}reen's function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett. 96, 255503 (2006)

    Article  Google Scholar 

  • N. Mingo: Anharmonic phonon flow through molecular-sized junctions, Phys. Rev. B 74, 125402 (2006)

    Article  Google Scholar 

  • J.-S. Wang, J. Wang, N. Zeng: Nonequilibrium {G}reen's function approach to mesoscopic thermal transport, Phys. Rev. B 74, 033408 (2006)

    Article  Google Scholar 

  • P. K. Schelling, S. R. Phillpot, P. Keblinski: Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation, Appl. Phys. Lett. 80, 2484 (2002)

    Article  Google Scholar 

  • N. Kondo, T. Yamamoto, K. Watanabe: Phonon wavepacket scattering dynamics in defective carbon nanotubes, Jpn. J. Appl. Phys. 45, L963 (2006)

    Article  Google Scholar 

  • J. Wang, J.-S. Wang: Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B 74, 054303 (2006)

    Article  Google Scholar 

  • J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer: Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A 74, 339 (2002)

    Article  Google Scholar 

  • H.-Y. Chiu, V. V. Deshpande, H. W. C. Postma, C. N. Lau, C. Mik{\' o}, L. Forr{\' o}, M. Bockrath: Ballistic phonon thermal transport in multiwalled carbon nanotubes, Phys. Rev. Lett. 95, 226101 (2005)

    Article  Google Scholar 

  • R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College, London 1998)

    Book  Google Scholar 

  • S. Maruyama: A molecular dynamics simulation of heat conduction of a finite length {SWNT}s, Physica B 323, 193 (2002)

    Article  Google Scholar 

  • S. Maruyama: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Microscale Thermophys. Eng. 7, 41 (2003)

    Article  Google Scholar 

  • R. Livi, S. Lepri: Thermal physics: heat in one dimension, Nature 421, 327 (2003)

    Article  Google Scholar 

  • N. Mingo, D. A. Broido: Length dependence of carbon nanotube thermal conductivity and the "problem of long waves", Nano Lett. 5, 1221 (2005)

    Article  Google Scholar 

  • J. Wang, J.-S. Wang: Carbon nanotube thermal transport: ballistic to diffuse, Appl. Phys. Lett. 88, 111909 (2006)

    Article  Google Scholar 

  • A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima: Direct evidence for atomic defects in graphene layers, Nature (London) 430, 870 (2004)

    Article  Google Scholar 

  • S. Maruyama, Y. Igarashi, Y. Taniguchi, J. Shiomi: Anisotropic heat transfer of single-walled carbon nanotubes, J. Therm. Sci. Tech. 1, 138 (2006)

    Article  Google Scholar 

  • N. Kondo, T. Yamamoto, K. Watanabe: Molecular-dynamics simulations of thermal transport in carbon nanotubes with structural defects, e-J. Surf. Sci. Nanotech. 4, 239 (2006)

    Article  Google Scholar 

  • C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl: Isotope effects on the thermal conductivity of boron nitride nanotubes, Phys. Rev. Lett. 97, 085901 (2006)

    Article  Google Scholar 

  • E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai: Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 6, 96 (2006)

    Article  Google Scholar 

  • Y. Miyamoto, S. Berber, M. Yoon, A. Rubio, D. Tom{\' a}nek: Onset of nanotube decay under extreme thermal and electronic excitations, Physica B 323, 78 (2002)

    Article  Google Scholar 

  • A. V. Krasheninnikov, K. Nordlund: Stability of irradiation-induced point defects on walls of carbon nanotubes, J. Vac. Sci. Technol. B 20, 728 (2002)

    Article  Google Scholar 

  • P. Kim, L. Shi, A. Majumdar, P. L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001)

    Article  Google Scholar 

  • J. M. Ziman: Electrons and Phonons (Oxford University Press, London 1960)

    Google Scholar 

  • J. Heremans, C. P. Beetz, Jr.: Thermal conductivity and thermopower of vapor-grown graphite fibers, Phys. Rev. B 32, 1981 (1985)

    Article  Google Scholar 

  • R. P. Feynman: There is plenty of room at the bottom, Eng. Sci. (Feb. 1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamamoto, T., Watanabe, K., Hernández, E.R. (2007). Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_5

Download citation

Publish with us

Policies and ethics