Skip to main content

Protein Scaffolds, Lipid Domains and Substrate Recognition in Protein Kinase C Function: Implications for Rational Drug Design

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

Protein kinase C (PKC) represents a family of lipid-regulated protein kinases with ubiquitous expression throughout the animal kingdom. High fidelity in PKC phosphorylation of intended target substrates is crucial for normal cell and tissue function. Therefore, it is likely that multiple interdependent factors contribute to determining substrate specificity in vivo, including divalent cation binding, substrate recognition motifs, local lipid heterogeneity and protein scaffolds. This review provides an overview of targeting mechanisms for the three subclasses of PKC isoforms, conventional, novel and atypical, with an emphasis on how they bind to substrates, lipids/lipid microdomains and multifunctional protein scaffolds. The diversity of interactions between PKC isoforms and their immediate environment is extensive, suggesting that systems biology approaches including proteomics and network modeling may be important strategies for rational drug design in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2006) A ubiquitous membrane fusion protein αSNAP: a potential therapeutic target for cancer, diabetes and neurological disorders? Expert Opin Ther Targets 10:723–733

    Article  Google Scholar 

  • Alvi F, Idkowiak-Baldys J, Baldys A, Raymond JR, Hannun YA (2007) Regulation of membrane trafficking and endocytosis by protein kinase C: emerging role of the pericentron, a novel protein kinase C-dependent subset of recycling endosomes. Cell Mol Life Sci 64:263–270

    Article  PubMed  CAS  Google Scholar 

  • Arimura T, Hayashi T, Terada H, Lee SY, Zhou Q, Takahashi M, Ueda K, Nouchi T, Hohda S, Shibutani M, Hirose M, Chen J, Park JE, Yasunami M, Hayashi H, Kimura A (2004) A cipher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem 279:6746–6752

    Article  PubMed  CAS  Google Scholar 

  • Bataini F, Mochly-Rosen D (2007) Happy Birthday protein kinase C: Past, present and future of a superfamily. Pharmacol Res 55:461–466

    Article  CAS  Google Scholar 

  • Blobe GC, Stribling DS, Fabbro D, Stabel S, Hannun YA (1996) Protein kinase C β II specifically binds to and is activated by F-actin. J Biol Chem 271:15823–15830

    Article  PubMed  CAS  Google Scholar 

  • Bose R, Molina H, Patterson AS, Bitok JK, Periswamy B, Bader JS, Powdey A, Cole PA (2006) Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci USA 103:9773–9778

    Article  PubMed  CAS  Google Scholar 

  • Brajenovic M, Joberty G, Kuster B, Bouwmeester T, Drewes G (2004) Comprehensive proteomics analysis of human PAR proteins reveals an interconnected protein network. J Biol Chem 279:12804–12811

    Article  PubMed  CAS  Google Scholar 

  • Campbell RA, King AJ (2004) Auditory neuroscience: a time for coincidence? Curr Biol 26:R886–R888

    Article  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol ester. J Biol Chem 257:7847–7851

    PubMed  CAS  Google Scholar 

  • Chung KY, Walker JW (2007) Interaction and inhibitory cross-talk between endothelin and erbB receptors in the adult heart. Mol Pharm 71:1494–1502

    Article  CAS  Google Scholar 

  • Comer FI, Parent CA (2007) Phosphoinositides specify polarity during epithelial organ development. Cell 128:239–240

    Article  PubMed  CAS  Google Scholar 

  • Corbin JA, Evans JH, Landgraf KE, Falke JJ (2007) Mechanism of specific membrane targeting of C2 domains: localized pools of target lipids enhance calcium affinity. Biochemistry 46:4322–4336

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997a) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J Biol Chem 272:6525–6533

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Sargiacomo M, Lisanti MP (1997b) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    Article  PubMed  CAS  Google Scholar 

  • Csukai M, Chen CH, DeMatteis MA, Mochly-Rosen (1997) The coatamer protein Cβ’-COP, a selective binding protein (RACK) for protein kinase C ε. J Biol Chem 272:29200–29206

    Article  PubMed  CAS  Google Scholar 

  • Dekker LV, Parker PJ (1997) Regulated binding of the protein kinase C substrate GAP-43 to the VO/C2 region of protein kinase C-δ. J Biol Chem 272:12747–12753

    Article  PubMed  CAS  Google Scholar 

  • Dev KK (2004) Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Dev KK, Henley JM (2006) The schizophrenic faces of PICK1. Trends Pharm Sci 27: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Dev K, Nakanishi S, Henley JM (2004) The PDZ domain of PICK1 differentially accepts protein kinase C and GluR2 as interacting ligands. J Biol Chem 279:41393–41397

    Article  PubMed  CAS  Google Scholar 

  • Dibble ARG, Hinderliter AK, Sando JJ, Biltonen RL (1996) Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserin/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J 71:1877–1890

    Article  PubMed  CAS  Google Scholar 

  • Dries DR, Gallegos LL, Newton AC (2007) A single residue in the C1 domain sensitizes novel PKC isoforms to cellular diacylglycerol formation. J Biol Chem 282:826–830

    Article  PubMed  CAS  Google Scholar 

  • Drin G, Scarlata S (2007) Stimulation of phospholipase C-β by membrane interactions, interdomain movement and G-protein binding. How many ways can you activate an enzyme? Cell Signal 19:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Edmondson RD, Vondriska TM, Biederman KJ, Zhang J, Jones RC, Zheng Y, Allen DJ, Xiu JX, Cardwell EM, Pisano MR, Ping P (2004) Protein kinase C ε signaling complexes include metabolism- and transcription/translation-related proteins. Mol Cell Proteomics 1:421–433

    Google Scholar 

  • Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single molecule level in a living cell. Science 316:1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Escriba PV, Wedegaertaener PB, Goni F, Volger O (2007) Lipid–protein interactions in GPCR-associated signaling. Biochem Biophys Acta 1768:836–852

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Olson EN (2002) Calsarscin, a novel skeletal muscle-specific member of the calsarsin family, interacts with multiple Z disc proteins. J Biol Chem 277:13998–134004

    Article  PubMed  CAS  Google Scholar 

  • Fuji K, Zhu G, Liu Y, Hallam J, Chen L, Herrero J, Shaw S (2004) Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc Natl Acad Sci USA 101:13744–13749

    Article  Google Scholar 

  • Fujise A, Mizuno K, Ueda Y, Osada S, Hirai S, Takayangi A, Shimizu, N, Owadal MK, Nakajima H, Ohno S (1994) Specificity of high affinity interaction of protein kinase C with a physiological substrate, myristoylated alanine-rich protein kinase C substrate. J Biol Chem 269:31642–31648

    PubMed  CAS  Google Scholar 

  • Gardiner SM, Takamiya K, Xia J, Suh JG, Johnson R, Yu S, Huganir RL (2005) Calcium-permeable AMPA receptor plasticity is mediated by subunit specific interactions with PICK1 and NSF. Neuron 45:903–915

    Article  CAS  Google Scholar 

  • Giorione JR, Lin JH, McCammon A, Newton AC (2006) Increased membrane affinity of the C1 domain of protein kinase C δ compensates for the lack of involvement of its C2 domain in membrane recruitment. J Biol Chem 281:1660–1669

    Article  CAS  Google Scholar 

  • Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nature Rev Cancer 7:281–294

    Article  CAS  Google Scholar 

  • Hagashida H, Hoshi N, Zhang JS, Yokoyama S, Hashii M, Jin D Noda M, Robbins J (2005) Protein kinase C bound with A kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ channels. Neurosci Res 51:231–234

    Article  CAS  Google Scholar 

  • Hirai T, Chida K (2003) Protein kinase C ζ: activation mechanisms and cellular functions. J. Biochem 133:1–7

    Article  PubMed  CAS  Google Scholar 

  • Huang XP, Pi Y, Lokuta AJ, Greaser ML, Walker JW (1997) Arachidonic acid stimulates protein kinase C-ε redistribution in heart cells. J Cell Sci 110:1625–1634

    PubMed  CAS  Google Scholar 

  • Hurley JH (2006) Membrane binding domains. Biochem Biophys Acta 1761:805–811

    PubMed  CAS  Google Scholar 

  • Hyatt SL, Liao L, Chapline C, Jaken S (1994) Identification and characterization of α-protein kinase C binding proteins in normal and transformed REF52 cells. Biochemistry 33:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Idris I, Gray S, Donnelly R (2001) PKC activation: isozyme-specific effects on metabolic and cardiovascular complications in diabetes. Diabetolgia 44:659–673

    Article  CAS  Google Scholar 

  • Jaken S, Parker PJ (2000) Protein kinase C binding partners. BioEssays 22:245–254

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Monreal AM, Aranda FJ, Micol V, Sanchez-Pinera P, de Godos A, Gomez-Fernandez JC (1999) Influence of the physical state of the membrane on the enzymatic activity and energy of activation of protein kinase C α. Biochemistry 38:7747–7754

    Article  PubMed  CAS  Google Scholar 

  • Johnson JA, Gray M, Chen CH, Mochly-Rosen D (1996) A protein kinase C translocation inhibitor as an isozyme-selective inhibitor of cardiac function. J Biol Chem 271:24962–24966

    Article  PubMed  CAS  Google Scholar 

  • Kang M, Chung KY, Walker JW (2007) G-protein coupled receptor signaling in myocardium: not for the faint of heart. Physiology 22:174–184

    Article  PubMed  CAS  Google Scholar 

  • Kelly DJ, Zhang Y, Hepper C, Gow RM, Jaworski K, Kemp BE Wilkinson-Berka JL, Gilbert RE (2003) Protein kinase C α inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 52:512–518

    Article  PubMed  CAS  Google Scholar 

  • Kheifets V, Mochly-Rosen D (2007) Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol Res 55:467–476

    Article  PubMed  CAS  Google Scholar 

  • Kheifets V, Bright R, Inagaki K, Schechtman D, Mochly-Rosen D (2006) Protein kinase C-δ-annexin V interaction: a required step in δ-PKC translocation and function. J Biol Chem 281:23218–23224

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa U, Matsuzaki H, Yamamoto T (2002) Protein kinase C-δ: activation mechanisms and function. J Biochem 132:831–839

    PubMed  CAS  Google Scholar 

  • Klauck TM, Faux MC, Labudda K, Langeberg LK, Jaken S, Scott JD (1996) Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271: 1589–1592

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Yamauchi E, Taniguchi H, Yamamoto T, Matsuzaki H, Takemura Y, Ohmae K, Kikkawa U, Nishizuka Y (2001) Phosphorylation sites of protein kinase C δ in H2O2 treated cells and its activation by tyrosine kinase in vitro. Proc Natl Acad Sci USA 98:6587–6592

    Article  PubMed  CAS  Google Scholar 

  • Lester LB, Scott JD (1997) Anchoring and scaffold proteins for kinases and phosphatases. Recent Prog Horm Res 52:409–429

    PubMed  CAS  Google Scholar 

  • Liu XJ, Yang C, Gupta N, Zou J, Chang YS, Fang FD (2007) Protein kinase C ζ regulation of GLUT-4 translocation through actin remodeling in CHO cells. J Mol Med 85: 851–861

    PubMed  CAS  Google Scholar 

  • Locasale JW, Shaw AS, Chakraborty AK (2007) Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proc Natl Acad Sci USA 104:13307–13312

    Article  PubMed  CAS  Google Scholar 

  • Madsen KL, Beuming T, Niv MY, Chang CW, Dev KK, Weinstein H, Gether U (2005) Molecular determinants for the complex binding specificity of the PDZ domain of PICK1. J Biol Chem 280:20539–20548

    Article  PubMed  CAS  Google Scholar 

  • Marquez VE, Nacro K, Benzaria S, Lee J, Sharma R, Teng K, Milne GW, Bienfait B, Wang S, Lewin NE, Blumberg PM (1999) The transition from a pharmacophore guided approach to a receptor guided approach in the design of potent PKC ligands. Pharmacol Ther 82:251–261

    Article  PubMed  CAS  Google Scholar 

  • Michel V, Backovic M (2007) Lipid rafts in health and disease. Biol Cell 99:129–140

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268:247–251

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Smith BL, Chen CH, Disatnik MH, Ron D (1995) Interaction of protein kinase C with RACK1, a receptor for activated C-kinase: a role in β protein kinase C mediated signaling transduction. Biochem Soc Trans 23:596–600

    PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Wu G, Hahn H, Osinska H, Liron T, Lorenz JN, Yatani A, Robbins J, Dorn GW (2000) Cardiotrophic effects of protein kinase C ε. Analysis by in vivo modulation of PKC ε translocation. Circ Res 86:1173–1179

    PubMed  CAS  Google Scholar 

  • Moscat J, Diaz-Meco M (2000) The atypical protein kinase Cs: functional specificity mediated by specific protein adapters. EMBO Rep 1:399–403

    Article  PubMed  CAS  Google Scholar 

  • Nauert JB, Klauck TM, Langeberg LK, Scott JD (1997) Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein. Curr Biol 7:52–62

    Article  PubMed  CAS  Google Scholar 

  • Newton AC, Keranen LM (1994) Phosphatidyl-L-serine is necessary for protein kinase C’s high affinity interaction with diacylglycerol-containing membranes. Biochemistry 33:6651–6658

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LL (1997) Determination of the specific substrate sequence motifs for protein kinase C. J Biol Chem 272:952–960

    Article  PubMed  CAS  Google Scholar 

  • Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95:307–318

    Article  PubMed  CAS  Google Scholar 

  • Pears C, Schaap D, Parker PJ (1991) The regulatory domain of protein kinase C ε restricts the catalytic domain specificity. Biochem J 276:257–260

    PubMed  CAS  Google Scholar 

  • Perander M, Bjorkoy G, Johansen T (2001) Nuclear import and export signals enable rapid nucleocytoplasmic shuttling of the atypical protein kinase C λ. J Biol Chem 276: 13015–13024

    Article  PubMed  CAS  Google Scholar 

  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    Article  PubMed  CAS  Google Scholar 

  • Pi Y, Walker JW (2000) Diacylglycerol and fatty acids synergistically increase cardiomyocyte contraction via activation of PKC. Am J Physiol 279:H26–H34

    CAS  Google Scholar 

  • Poole AW, Pula G, Hers I, Crosby D, Jones ML (2004) PKC-interacting proteins: from function to pharmacology. Trends Pharm Sci 25:528–535

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Mayhew MW, Cooper JB, Terrian DM (1996) Identification and localization of an actin-binding motif unique to PKC ε and participates in regulation of synaptic function. J Cell Biol 132:77–90

    Article  PubMed  CAS  Google Scholar 

  • Ptacik J, Snyder M (2006) Charging it up:global analysis of protein phosphorylation. Trends Genet 22:545–554

    Article  CAS  Google Scholar 

  • Reymond N, Garrido-Urbani S, Borg J-P, Dubreuil P, Lopez M (2005) PICK-1: A scaffold protein that interacts with Nectins and JAMS at cell junctions. FEBS Lett 579:2243–2249

    Article  PubMed  CAS  Google Scholar 

  • Robia SL Ghanta J, Robu V, Walker JW (2001) Localization and kinetics of protein kinase C-ε anchoring in cardiac myocytes. Biophys J 80:2140–2151

    Article  PubMed  CAS  Google Scholar 

  • Robia SL, Kang M, Walker JW (2005) Novel determinant of PKC ε anchoring at cardiac Z-lines. Am J Physiol 281:H1941–H1950

    Google Scholar 

  • Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the β subunit of G-proteins. Proc Natl Acad Sci USA 91:839–843

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Luo J, Mochly-Rosen D (1995) C2 region-derived peptides inhibit translocation and function of β protein kinase C in vivo. J Biol Chem 270:24180–24187

    Article  PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X, Steinberg SF (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res 84:980–988

    PubMed  CAS  Google Scholar 

  • Sahin O, Lobke C, Korf U, Appelhans H, Sultmann H, Poustka A, Wiemann S, Arlt D (2007) Combinatorial RNAi for quantitative protein network analysis. Proc Natl Acad Sci USA 104:6579–6584

    Article  PubMed  CAS  Google Scholar 

  • Sando JJ, Chertihin OI (1996) Activation of protein kinase C by lysophosphatidic acid: dependence on composition of lipid vesicles. Biochem J 317:583–588

    PubMed  CAS  Google Scholar 

  • Schelzke K, White FM (2006) Phosphoproteomic approach to elucidate cell signaling networks. Curr Opin Biotech 17:406–414

    Article  CAS  Google Scholar 

  • Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J (2004) Identification of the versatile scaffold RACK1 on the eukaryotic ribosome by cryo EM. Nat Struct Biol 11:957

    Article  CAS  Google Scholar 

  • Souroujon MC, Yao L, Chen H, Endemann G, Khaner H, Geeraert V, Schechtman D, Gordon AS, Diamond I, Mochly-Rosen (2004) State-specific monoclonal antibodies identify an intermediate state in A protein kinase C activation. J Biol Chem 17617–17624

    Google Scholar 

  • Spector NL, Yarden Y, Smith B, Ljuba L, Trusk P, Pry K, Hill JE, Xia W, Seger R, Bacus SS (2007) Activation of AMP-activated protein kinase by human EGF receptor 2/EGR receptor tyrosine kinase inhibitor protects cardiac cells. Proc Natl Acad Sci USA 104: 10607–10612

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar R, Pi YQ, Huang XP, Walker JW (1997) Stereospecific protein kinase C activation by photolabile diglycerides. Bioorg Med Chem Lett 7:341–346

    Article  CAS  Google Scholar 

  • Staudinger J, Zhou J, Burgess R, Elledge SJ, Olson EN (1995) PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 128:263–271

    Article  PubMed  CAS  Google Scholar 

  • Staudinger J, Lu J, Olson EN (1997) Specific interaction of the PDZ domain of PICK1 with the COOH-terminus of protein kinase C α. J Biol Chem 272:32019–32024

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Akimoto K, Ohno S (2003) Protein kinase C λ/ι: a PKC isotype essential for the development of multicellular organisms. J Biochem 133:9–16

    Article  PubMed  CAS  Google Scholar 

  • Tamamura H, Sigano DM, Lewin NE, Peach ML, Nicklaus MC, Blumberg PM, Marquez VE (2004) Conformationally constrained analogues of DAG. Hydrophobic ligand protein interactions versus ligand lipid interactions of DAG lactones with PKC. J Med Chem 23:4858–4864

    Article  CAS  Google Scholar 

  • Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ (2001) Structural basis of arfaptin mediated cross-talk between Rac and Arf signaling pathways. Nature 411:215–219

    Article  PubMed  CAS  Google Scholar 

  • Vondriska TM, Pass JM, Ping P (2004) Scaffold proteins and assembly of mulitprotein complexes. J Mol Cell Cardiol 37:391–397

    Article  PubMed  CAS  Google Scholar 

  • Wang WL, Yeh SF, Chang YI, Hsiao SF, Lian WN, Lin CH, Huang CYF, Lin WJ (2003) PICK1, an anchoring protein that specifically targets protein kinase C to mitochondria selectively upon serum stimulation in NIH 3T3 cells. J Biol Chem 278:37705–37712

    Article  PubMed  CAS  Google Scholar 

  • Woolf PJ, Prudhomme W, Daheron L, Daley GQ, Lauffenburger DA (2005) Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 21:741–753

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Xia J (2007) Structure and function of PICK1. Neurosignals 15:190–201

    Article  CAS  Google Scholar 

  • Zeidman R, Troller U, Raghunath A, Pahlman S, Larsson C (2002) Protein kinase Cε actin binding is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell 13:12–24

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Ruiz-Lozano P, Marton ME, Chien J (1999) Cypher: a striated muscle-restricted PDZ and LIM domain-containing protein, binds to a-actinin-2 and protein kinase C. J Biol Chem 274:19807–19813

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, Knoll G, Shelton GD, Evans S, Chen J (2001) Ablation of cipher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 155:605–612

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walker, J.W. (2008). Protein Scaffolds, Lipid Domains and Substrate Recognition in Protein Kinase C Function: Implications for Rational Drug Design. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_8

Download citation

Publish with us

Policies and ethics