Skip to main content

Visual Analysis of Biomolecular Surfaces

  • Conference paper
Book cover Visualization in Medicine and Life Sciences

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Surface models of biomolecules have become crucially important for the study and understanding of interaction between biomolecules and their environment. We argue for the need for a detailed understanding of biomolecular surfaces by describing several applications in computational and structural biology. We review methods used to model, represent, characterize, and visualize biomolecular surfaces focusing on the role that geometry and topology play in identifying features on the surface. These methods enable the development of efficient computational and visualization tools for studying the function of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Alm and D. Baker. Prediction of protein-folding mechanisms from free energy landscapes derived from native structures. Proc. Natl. Acad. Sci. (USA), 96:11305–11310, 1999.

    Article  Google Scholar 

  2. N. Akkiraju and H. Edelsbrunner. Triangulating the surface of a molecule. Discrete Applied Mathematics, 71:5–22, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation on a 2-manifold. In Proc. 20th Ann. Sympos. Comput. Geom., pages 357-365, 2004.

    Google Scholar 

  4. E. Alm, A. V. Morozov, T. Kortemme, and D. Baker. Simple physical models connect theory and experiments in protein folding kinetics. J. Mol. Biol., 322:463–476, 2002.

    Article  Google Scholar 

  5. C. B. Anfinsen. Principles that govern protein folding. Science, 181:223–230, 1973.

    Article  Google Scholar 

  6. T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly, 77(5):475–485, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385–396, 2004.

    Article  Google Scholar 

  8. A. Bernal, U. Ear, and N. Kyrpides. Genomes online database (GOLD): a monitor of genome projects world-wide. Nucl. Acids. Res., 29:126–127, 2001.

    Article  Google Scholar 

  9. F. C. Bernstein, T. F. Koetzle, G. William, D. J. Meyer, M. D. Brice, J. R. Rodgers, et al. The protein databank: a computer-based archival file for macromolecular structures. J. Mol. Biol., 112:535–542, 1977.

    Article  Google Scholar 

  10. M. Billeter, Y.Q. Qian, G. Otting, M. Muller, W. Gehring, and K. Wuthrich. Determination of the nuclear magnetic resonance solution structure of an antennapedia homeodomain-dna complex. J. Mol. Biol., 234:1084–1093, 1993.

    Article  Google Scholar 

  11. D. Baker and A. Sali. Protein structure prediction and structural genomics. Science, 294:93–96, 2001.

    Article  Google Scholar 

  12. C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing, New York, NY, 1991.

    Google Scholar 

  13. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, et al. The Protein Data Bank. Nucl. Acids. Res., 28:235–242, 2000.

    Article  Google Scholar 

  14. D. A. Cosgrove, D. M. Bayada, and A. J. Johnson. A novel method of aligning molecules by local surface shape similarity. J. Comput-Aided Mol Des, 14:573–591, 2000.

    Article  Google Scholar 

  15. F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based upon the Morse-Smale complex and the Connolly function. In Proc. 19th Annu. ACM Sympos. Comput. Geom., 2003.

    Google Scholar 

  16. H.-L Cheng, T. K. Dey, H. Edelsbrunner, and J. Sullivan. Dynamic skin triangulation. Discrete Comput. Geom., 25:525–568, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. E. Cheatham and P. A. Kollman. Molecular dynamics simulation of nucleic acids. Ann. Rev. Phys. Chem., 51:435–471, 2000.

    Article  Google Scholar 

  18. M. L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst., 16:548–558, 1983.

    Article  Google Scholar 

  19. M. L. Connolly. Molecular surface triangulation. J. Appl. Cryst., 18:499–505, 1985.

    Article  Google Scholar 

  20. M. L. Connolly. Measurement of protein surface shape by solid angles. J. Mol. Graphics., 4:3–6, 1986.

    Article  Google Scholar 

  21. M. L. Connolly. Shape complementarity at the hemo-globin albl subunit interface. Biopolymers, 25:1229–1247, 1986.

    Article  Google Scholar 

  22. M. L. Connolly. Molecular surface: A review. Network Science, 1996.

    Google Scholar 

  23. R. B. Corey and L. Pauling. Molecular models of amino acids, peptides and proteins. Rev. Sci. Instr., 24:621–627, 1953.

    Article  Google Scholar 

  24. T. E. Creighton. Proteins. Structures and Molecular Principles. Free-man, New York, NY, 1984.

    Google Scholar 

  25. H. L. Cheng and X. Shi. Guaranteed quality triangulation of molecular skin surfaces. In Proc. IEEE Visualization, pages 481-488, 2004.

    Google Scholar 

  26. H. L. Cheng and X. Shi. Quality mesh generation for molecular skin surfaces using restricted union of balls. In Proc. IEEE Visualization, pages 399-405, 2005.

    Google Scholar 

  27. D. Duhovny, R. Nussinov, and H. J. Wolfson. Efficient unbound docking of rigid molecules. In WABI ’02: Proceedings of the Second International Workshop on Algorithms in Bioinformatics, pages 185-200, 2002.

    Google Scholar 

  28. B. S. Duncan and A. J. Olson. Approximation and characterization of molecular surfaces. Biopolymers, 33:219–229, 1993.

    Article  Google Scholar 

  29. B. S. Duncan and A. J. Olson. Shape analysis of molecular surfaces. Biopolymers, 33:231–238, 1993.

    Article  Google Scholar 

  30. H. Edelsbrunner, M. A. Facello, and J. Liang. On the definition and construction of pockets in macromolecules. Discrete Appl. Math., 88:83–102, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30(1):87–107, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. E. Exner, M. Keil, and J. Brickmann. Pattern recognition strategies for molecular surfaces. I. Pattern generation using fuzzy set theory. J. Comput. Chem., 23:1176–1187, 2002.

    Article  Google Scholar 

  33. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28(4):511–533, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Eisenberg and A. D. McLachlan. Solvation energy in protein folding and binding. Nature (London), 319:199–203, 1986.

    Article  Google Scholar 

  35. E. Fischer. Einfluss der configuration auf die wirkung derenzyme. Ber. Dtsch. Chem. Ges., 27:2985–2993, 1894.

    Article  Google Scholar 

  36. R. F. Gesteland and J. A. Atkins. The RNA World: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Plainview, NY, 1993.

    Google Scholar 

  37. M. Garland. Multiresolution modeling: survey and future opportunities. In Eurographics State of the Art Report, 1999.

    Google Scholar 

  38. J.A. Grant and B.T. Pickup. A Gaussian description of molecular shape. J. Phys. Chem., 99:3503–3510, 1995.

    Article  Google Scholar 

  39. K. D. Gibson and H. A. Scheraga. Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease s-peptide. Proc. Natl. Acad. Sci. (USA), 58:420–427, 1967.

    Article  Google Scholar 

  40. W. Heiden and J. Brickmann. Segmentation of protein surfaces using fuzzy logic. J. Mol Graphics., 12:106–115, 1994..

    Article  Google Scholar 

  41. H. Hoppe. Progressive meshes. In ACM SIGGRAPH, pages 99-108, 1996.

    Google Scholar 

  42. W. Kauzmann. Some factors in the interpretation of protein denaturation. Adv.Protein Chem. 14:1–63, 1959.

    Article  Google Scholar 

  43. J. Kendrew, R. Dickerson, B. Strandberg, R. Hart, D. Davies, and D. Philips. Structure of myoglobin: a three dimensional Fourier synthesis at 2 angstrom resolution. Nature (London), 185:422–427, 1960.

    Article  Google Scholar 

  44. P. Koehl and M. Levitt. A brighter future for protein structure prediction. Nature Struct. Biol., 6:108–111, 1999.

    Article  Google Scholar 

  45. P. Koehl and M. Levitt. Protein topology and stability defines the space of allowed sequences. Proc. Natl. Acad. Sci. (USA), 99:1280–1285, 2002.

    Article  Google Scholar 

  46. M. Karplus and J. A. McCammon. Molecular dynamics simulations of biomolecules. Nature Struct. Biol., 9:646–652, 2002.

    Article  Google Scholar 

  47. P. Koehl. Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol., 16:142–151, 2006.

    Article  Google Scholar 

  48. W. L. Koltun. Precision space-filling atomic models. Biopolymers, 3:665–679, 1965.

    Article  Google Scholar 

  49. K. T. Simons K. W. Plaxco and D. Baker. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol., 277:985–994, 1998.

    Article  Google Scholar 

  50. J. Lien and N. M. Amato. Approximate convex decomposition of polyhedra. Technical report, Technial Report TR05-001, Texas A&M University, 2005.

    Google Scholar 

  51. K. Lum, D. Chandler, and J. D. Weeks. Hydrophobicity at small and large length scales. J. Phys. Chem. B., 103:4570–4577, 1999.

    Article  Google Scholar 

  52. J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam. Analytical shape computation of macromolecules. I. Molecular area and volume through alpha shape. Proteins: Struct. Func. Genet., 33:1–17, 1998.

    Article  Google Scholar 

  53. J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam. Analytical shape computation of macromolecules. II. Inaccessible cavities in proteins. Proteins: Struct. Func. Genet., 33:18–29, 1998.

    Article  Google Scholar 

  54. J. Liang, H. Edelsbrunner, and C. Woodward. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Prot. Sci., 7:1884–1897, 1998.

    Article  Google Scholar 

  55. B. Lee and F. M. Richards. Interpretation of protein structures: estimation of static accessibility. J. Mol. Biol., 55:379–400, 1971.

    Article  Google Scholar 

  56. Y. Levy, P. G. Wolynes, and J. N. Onuchic. Protein topology determines binding mechanism. Proc. Natl. Acad. Sci. (USA), 101:511–516, 2004.

    Article  Google Scholar 

  57. V. Muñoz and W. A. Eaton. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. (USA), 96:11311–11316, 1999.

    Article  Google Scholar 

  58. J. C. Mitchell, R. Kerr, and L. F. Ten Eyck. Rapid atomic density measures for molecular shape characterization. J. Mol. Graph. Model., 19:324–329, 2001.

    Google Scholar 

  59. V. Natarajan, Y. Wang, P. Bremer, V. Pascucci, and B. Hamann. Segmenting molecular surfaces. Computer Aided Geometric Design, 23:495–509, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  60. T. Ooi, M. Oobatake, G. Nemethy, and H. A. Scheraga. Accessible surface-areas as a measure of the thermodynamic parameters of hydra-tion of peptides. Proc. Natl. Acad. Sci. (USA), 84:3086–3090, 1987.

    Article  Google Scholar 

  61. M. Perutz, M. Rossmann, A. Cullis, G. Muirhead, G. Will, and A. North. Structure of hemoglobin: a three-dimensional Fourier synthesis at 5.5 angstrom resolution, obtained by X-ray analysis. Nature (London), 185:416–422, 1960.

    Article  Google Scholar 

  62. F. M. Richards. Areas, volumes, packing and protein structure. Ann. Rev. Biophys. Bioeng., 6:151–176, 1977.

    Article  Google Scholar 

  63. T. J. Richmond. Solvent accessible surface area and excluded volume in proteins. J. Molecular Biology, 178:63–89, 1984.

    Article  Google Scholar 

  64. T. Simonson and A. T. Brünger. Solvation free-energies estimated from macroscopic continuum theory: an accuracy assessment. J. Phys. Chem., 98:4683–4694, 1994.

    Article  Google Scholar 

  65. I. Tunon, E. Silla, and J. L. Pascual-Ahuir. Molecular-surface area and hydrophobic effect. Protein Eng., 5:715–716, 1992.

    Article  Google Scholar 

  66. A. Varshney and F. P. Brooks Jr. Fast analytical computation of richard’s smooth molecular surface. In Proc. IEEE Visualization, pages 300-307, 1993.

    Google Scholar 

  67. Y. Wang, P. Agarwal, P. Brown, H. Edelsbrunner, and J. Rudulph. Fast geometric algorithm for rigid protein docking. In Proc. 10th. Pacific Symposium on Biocomputing (PSB), pages 64-75, 2005.

    Google Scholar 

  68. J. D. Watson and F. H. C. Crick. A structure for Deoxyribose Nucleic Acid. Nature (London), 171:737–738, 1953.

    Article  Google Scholar 

  69. R. H. Wood and P. T. Thompson. Differences between pair and bulk hydrophobic interactions. Proc. Natl. Acad. Sci. (USA), 87:946–949, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Natarajan, V., Koehl, P., Wang, Y., Hamann, B. (2008). Visual Analysis of Biomolecular Surfaces. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_14

Download citation

Publish with us

Policies and ethics