Skip to main content

Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases

  • Chapter
Protein Engineering

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 22))

The central dogma and its accurate interpretation by a large array of biomolecules remains a fascinating process. Understanding its mechanisms of decoding holds tremendous potential for the future of protein engineering. The family of aminoacyl transfer RNA (tRNA) synthetases (AARSs) is at the forefront of this field. While aminoacylation is the primary role of these enzymes, they possess various additional functions that are important to cell survival. An editing activity, which clears incorrectly attached amino acids, minimizes errors in protein synthesis. If this error correction mechanism is disabled, the incorporation of novel amino acids into proteins offers an exciting approach to expand the genetic code (Döring et al. 2001; Nangle et al. 2006). This chapter focuses on the AARSs that have amino acid editing functions with an emphasis on their continuing dynamic role in the field of protein engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahel I, Stathopoulos C, Ambrogelly A, Sauerwald A, Toogood H, Hartsch T, Söll D (2002) Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. J Biol Chem 277:34743–34748

    PubMed  CAS  Google Scholar 

  • Ahel I, Korencic D, Ibba M, Söll D (2003) Trans-editing of mischarged tRNAs. Proc Natl Acad Sci USA 100:15422–15427

    PubMed  CAS  Google Scholar 

  • Ambrogelly A, Korencic D, Ibba M (2002) Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J Bacteriol 184:4594–4600

    PubMed  CAS  Google Scholar 

  • An S, Musier-Forsyth K (2004) Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J Biol Chem 279:42359–42362

    PubMed  CAS  Google Scholar 

  • An S, Musier-Forsyth K (2005) Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase·YbaK·tRNA ternary complex. J Biol Chem 280:34465–34472

    PubMed  CAS  Google Scholar 

  • Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, Schultz PG (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci USA 101:7566–7571

    PubMed  CAS  Google Scholar 

  • Apostol I, Levine J, Lippincott J, Leach J, Hess E, Glascock CB, Weickert MJ, Blackmore R (1997) Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. J Biol Chem 272:28980–28988

    PubMed  CAS  Google Scholar 

  • Ataide SF, Ibba M (2004) Discrimination of cognate and noncognate substrates at the active site of class II lysyl-tRNA synthetase. Biochemistry 43:11836–11841

    PubMed  CAS  Google Scholar 

  • Bacher JM, Schimmel P (2007) An editing-defective aminoacyl-tRNA synthetase is mutagenic in aging bacteria via the SOS response. Proc Natl Acad Sci USA 104:1907–1912

    PubMed  CAS  Google Scholar 

  • Baldwin AN, Berg P (1966) Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem 241:839–845

    PubMed  CAS  Google Scholar 

  • Beatty KE, Xie F, Wang Q, Tirrell DA (2005) Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc 127:14150–14151

    PubMed  CAS  Google Scholar 

  • Beebe K, Merriman E, Schimmel P (2003a) Structure-specific tRNA determinants for editing a mischarged amino acid. J Biol Chem 278:45056–45061

    CAS  Google Scholar 

  • Beebe K, Ribas De Pouplana L, Schimmel P (2003b) Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J 22:668–675

    CAS  Google Scholar 

  • Beebe K, Merriman E, Ribas De Pouplana L, Schimmel P (2004) A domain for editing by an archaebacterial tRNA synthetase. Proc Natl Acad Sci USA 101:5958–5963

    PubMed  CAS  Google Scholar 

  • Betha AK, Williams AM, Martinis SA (2007) Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity. Biochemistry 46:6258–6267

    PubMed  CAS  Google Scholar 

  • Beuning PJ, Musier-Forsyth K (2000) Hydrolytic editing by a class II aminoacyl-tRNA syn-thetase. Proc Natl Acad Sci USA 97:8916–8920

    PubMed  CAS  Google Scholar 

  • Beuning PJ, Musier-Forsyth K (2001) Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase. J Biol Chem 276:30779–30785

    PubMed  CAS  Google Scholar 

  • Bishop AC, Nomanbhoy TK, Schimmel P (2002) Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase. Proc Natl Acad Sci USA 99:585–590

    PubMed  CAS  Google Scholar 

  • Bishop AC, Beebe K, Schimmel PR (2003) Interstice mutations that block site-to-site translocation of a misactivated amino acid bound to a class I tRNA synthetase. Proc Natl Acad Sci USA 100:490–494

    PubMed  CAS  Google Scholar 

  • Bullard JM, Cai YC, Spremulli LL (2000) Expression and characterization of the human mito-chondrial leucyl-tRNA synthetase. Biochim Biophys Acta 1490:245–258

    PubMed  CAS  Google Scholar 

  • Budisa N, Steipe B, Demange P, Eckerskorn C, Kellermann J, Huber R (1995) High-level biosyn-thetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenome-thionine, telluromethionine and ethionine in Escherichia coli. Eur J Biochem 230:788–796

    PubMed  CAS  Google Scholar 

  • Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266:16965–16968

    PubMed  CAS  Google Scholar 

  • Carter CW Jr (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62:715–748

    PubMed  CAS  Google Scholar 

  • Chen JF, Guo NN, Li T, Wang ED, Wang YL (2000) CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry 39:6726–6731

    PubMed  CAS  Google Scholar 

  • Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967

    PubMed  CAS  Google Scholar 

  • Cirino PC, Tang Y, Takahashi K, Tirrell DA, Arnold FH (2003) Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnol Bioeng 83:729–734

    PubMed  CAS  Google Scholar 

  • Cramer F, Faulhammer H, von der Haar F, Sprinzl M, Sternbach H (1975) Aminoacyl-tRNA syn-thetases from baker's yeast: reacting site of enzymatic aminoacylation is not uniform for all tRNAs. FEBS Lett 56:212–214

    PubMed  CAS  Google Scholar 

  • Crépin T, Schmitt E, Blanquet S, Mechulam Y (2002) Structure and function of the C-terminal domain of methionyl-tRNA synthetase. Biochemistry 41:13003–13011

    PubMed  Google Scholar 

  • Crépin T, Schmitt E, Mechulam Y, Sampson PB, Vaughan MD, Honek JF, Blanquet S (2003) Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase. J Mol Biol 332:59–72

    PubMed  Google Scholar 

  • Crépin T, Schmitt E, Blanquet S, Mechulam Y (2004) Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi. Biochemistry 43:2635–2644

    PubMed  Google Scholar 

  • Crépin T, Schmitt E, Mechulam Y, Sampson PB, Vaughan MD, Honek JF, Blanquet S (2003) Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase. J Mol Biol 332:59–72

    PubMed  Google Scholar 

  • Crépin T, Yaremchuk A, Tukalo M, Cusack S (2006) Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain. Structure 14:1511–1525

    PubMed  Google Scholar 

  • Cusack S (1995) Eleven down and nine to go. Nat Struct Biol 2:824–831

    PubMed  CAS  Google Scholar 

  • Cusack S, Berthet-Colominas C, Härtlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347:249–255

    PubMed  CAS  Google Scholar 

  • Cusack S, Yaremchuk A, Tukalo M (2000) The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J 19:2351–2361

    PubMed  CAS  Google Scholar 

  • Datta D, Wang P, Carrico IS, Mayo SL, Tirrell DA (2002) A designed phenylalanyl-tRNA syn-thetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J Am Chem Soc 124:5652–5653

    PubMed  CAS  Google Scholar 

  • Deiters A, Cropp TA, Mukherji M, Chin JW, Anderson JC, Schultz PG (2003) Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 125:11782–11783

    PubMed  CAS  Google Scholar 

  • Desogus G, Todone F, Brick P, Onesti S (2000) Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Biochemistry 39:8418–8425

    PubMed  CAS  Google Scholar 

  • Dock-Bregeon A, Sankaranarayanan R, Romby P, Caillet J, Springer M, Rees B, Francklyn CS, Ehresmann C, Moras D (2000) Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell 103:877–884

    CAS  Google Scholar 

  • Dock-Bregeon AC, Rees B, Torres-Larios A, Bey G, Caillet J, Moras D (2004) Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol Cell 16:375–386

    PubMed  CAS  Google Scholar 

  • Döring V, Mootz HD, Nangle LA, Hendrickson TL, de Crécy-Lagard V, Schimmel P, Marliere P (2001) Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science 292:501–504

    PubMed  Google Scholar 

  • Du X, Wang ED (2003) Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing. Nucleic Acids Res 31:2865–2872

    PubMed  CAS  Google Scholar 

  • Dwivedi S, Kruparani SP, Sankaranarayanan R (2005) A d-amino acid editing module coupled to the translational apparatus in archaea. Nat Struct Mol Biol 12:556–557

    PubMed  CAS  Google Scholar 

  • Eldred EW, Schimmel PR (1972) Rapid deacylation by isoleucyl transfer ribonucleic acid syn-thetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J Biol Chem 247:2961–2964

    PubMed  CAS  Google Scholar 

  • Englisch S, Englisch U, von der Haar F, Cramer F (1986) The proofreading of hydroxy analogues of leucine and isoleucine by leucyl-tRNA synthetases from E. coli and yeast. Nucleic Acids Res 14:7529–7539

    PubMed  CAS  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    PubMed  CAS  Google Scholar 

  • Eriani G, Cavarelli J, Martin F, Ador L, Rees B, Thierry JC, Gangloff J, Moras D (1995) The class II aminoacyl-tRNA synthetases and their active site: evolutionary conservation of an ATP binding site. J Mol Evol 40:499–508

    PubMed  CAS  Google Scholar 

  • Farrow MA, Nordin BE, Schimmel P (1999) Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase. Biochemistry 38:16898–16903

    PubMed  CAS  Google Scholar 

  • Fersht AR (1977a) Enzyme structure and mechanism. W.H. Freeman and Company Limited, pp 283 Fersht AR (1977b) Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry 16:1025–1030

    CAS  Google Scholar 

  • Fersht AR, Dingwall C (1979a) An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis. Biochemistry 18:1250–1256

    CAS  Google Scholar 

  • Fersht AR, Dingwall C (1979b) Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry 18:1245–1249

    CAS  Google Scholar 

  • Fersht AR, Dingwall C (1979c) Establishing the misacylation/deacylation of the tRNA pathway for the editing mechanism of prokaryotic and eukaryotic valyl-tRNA synthetases. Biochemistry 18:1238–1245

    CAS  Google Scholar 

  • Fersht AR, Kaethner MM (1976) Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry 15:3342–3346

    PubMed  CAS  Google Scholar 

  • Fersht AR, Shindler JS, Tsui WC (1980) Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyl-tRNA synthetases. Biochemistry 19:5520–5524

    PubMed  CAS  Google Scholar 

  • First EA (2005) Catalysis of the tRNA aminoacylation reaction. In: Aminoacyl-tRNA synthetases, Landes Bioscience/Eurekah.com, Georgetown, TX, pp 328–352

    Google Scholar 

  • Fishman R, Ankilova V, Moor N, Safro M (2001) Structure at 2.6 Å resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese. Acta Crystallogr D Biol Crystallogr 57(Pt 11):1534–1544

    PubMed  CAS  Google Scholar 

  • Freist W (1989) Mechanisms of aminoacyl-tRNA synthetases: a critical consideration of recent results. Biochemistry 28:6787–6795

    PubMed  CAS  Google Scholar 

  • Freist W, Cramer F (1983) Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2′,3′-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids. Eur J Biochem 131:65–80

    PubMed  CAS  Google Scholar 

  • Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S (2000) Structural basis for double-sieve discrimination of l-valine from l-isoleucine and l-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103:793–803

    PubMed  CAS  Google Scholar 

  • Fukai S, Nureki O, Sekine S, Shimada A, Vassylyev DG, Yokoyama S (2003) Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA 9:100–111

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Yokoyama S (2005b) Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain. J Biol Chem 280:29937–29945

    CAS  Google Scholar 

  • Fukunaga R, Yokoyama S (2005c) Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J Mol Biol 346:57–71

    CAS  Google Scholar 

  • Fukunaga R, Yokoyama S (2006) Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J Mol Biol 359:901–912

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Yokoyama S (2007) The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile). Biochemistry 46:4985–4996

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Fukai S, Ishitani R, Nureki O, Yokoyama S (2004) Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with l-valine. J Biol Chem 279:8396–8402

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Yokoyama S (2005a) Aminoacylation complex structures of leucyl-tRNA synthetase and tRNA(Leu) reveal two modes of discriminator-base recognition. Nat Struct Mol Biol 12:915–922

    CAS  Google Scholar 

  • Geslain R, Ribas de Pouplana L (2004) Regulation of RNA function by aminoacylation and editing? Trends Genet 20:604–610

    PubMed  CAS  Google Scholar 

  • Ghosh G, Kim HY, Demaret JP, Brunie S, Schulman LH (1991a) Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase. Biochemistry 30:11767–11774

    CAS  Google Scholar 

  • Ghosh G, Pelka H, Schulman LH, Brunie S (1991b) Activation of methionine by Escherichia coli methionyl-tRNA synthetase. Biochemistry 30:9569–9575

    CAS  Google Scholar 

  • Giegé R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017–5035

    PubMed  Google Scholar 

  • Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M (1997) The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure 5:59–68

    PubMed  CAS  Google Scholar 

  • Gruic-Sovulj I, Uter N, Bullock T, Perona JJ (2005) tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J Biol Chem 280:23978–23986

    PubMed  CAS  Google Scholar 

  • Hale SP, Schimmel P (1996) Protein synthesis editing by a DNA aptamer. Proc Natl Acad Sci USA 93:2755–2758

    PubMed  CAS  Google Scholar 

  • Hale SP, Auld DS, Schmidt E, Schimmel P (1997) Discrete determinants in transfer RNA for editing and aminoacylation. Science 276:1250–1252

    PubMed  CAS  Google Scholar 

  • Hati S, Ziervogel B, Sternjohn J, Wong FC, Nagan MC, Rosen AE, Siliciano PG, Chihade JW, Musier-Forsyth K (2006) Pre-transfer editing by class II prolyl-tRNA synthetase: role of ami-noacylation active site in “selective release” of noncognate amino acids. J Biol Chem 281: 27862–27872

    PubMed  CAS  Google Scholar 

  • Hendrickson TL, Schimmel P (2003) Transfer RNA-dependent amino acid discrimination by ami-noacyl-tRNA synthetases. In: translation mechanisms. Kluwer Academic/Plenum Publishers, pp 35–64

    Google Scholar 

  • Hendrickson TL, Nomanbhoy TK, Schimmel P (2000) Errors from selective disruption of the editing center in a tRNA synthetase. Biochemistry 39:8180–8186

    PubMed  CAS  Google Scholar 

  • Hendrickson TL, Nomanbhoy TK, de Crécy-Lagard V, Fukai S, Nureki O, Yokoyama S, Schimmel P (2002) Mutational separation of two pathways for editing by a class I tRNA synthetase. Mol Cell 9:353–362

    PubMed  CAS  Google Scholar 

  • Hendrickson TL, de Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    PubMed  CAS  Google Scholar 

  • Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71:4135–4139

    PubMed  CAS  Google Scholar 

  • Hopfield JJ, Yamane T, Yue V, Coutts SM (1976) Direct experimental evidence for kinetic proofreading in aminoacylation of tRNAIle. Proc Natl Acad Sci USA 73:1164–1168

    PubMed  CAS  Google Scholar 

  • Hountondji C, Dessen P, Blanquet S (1986) Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie 68:1071–1078

    PubMed  CAS  Google Scholar 

  • Hountondji C, Lazennec C, Beauvallet C, Dessen P, Pernollet JC, Plateau P, Blanquet S (2002) Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyl-tRNA synthetase. Biochemistry 41:14856–14865

    PubMed  CAS  Google Scholar 

  • Hsu JL, Rho SB, Vanella KM, Martinis SA (2006) Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. J Biol Chem 281:23075–23082

    PubMed  CAS  Google Scholar 

  • Hussain T, Kruparani SP, Pal B, Dock-Bregeon AC, Dwivedi S, Shekar MR, Sureshbabu K, Sankaranarayanan R (2006) Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J 25:4152–4162

    PubMed  CAS  Google Scholar 

  • Ibba M, Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    PubMed  CAS  Google Scholar 

  • Ibba M, Kast P, Hennecke H (1994) Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 33:7107–7112

    PubMed  CAS  Google Scholar 

  • Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Söll D (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122

    PubMed  CAS  Google Scholar 

  • Ibba M, Losey HC, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D (1999) Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement. Proc Natl Acad Sci USA 96:418–423

    PubMed  CAS  Google Scholar 

  • Ibba M, Becker HD, Stathopoulos C, Tumbula DL, Söll D (2000) Author correction. Trends Biochem Sci 25:380

    PubMed  CAS  Google Scholar 

  • Igloi GL, von der Haar F, Cramer F (1978) Aminoacyl-tRNA synthetases from yeast: generality of chemical proofreading in the prevention of misaminoacylation of tRNA. Biochemistry 17:3459–3468

    PubMed  CAS  Google Scholar 

  • Ishijima J, Uchida Y, Kuroishi C, Tuzuki C, Takahashi N, Okazaki N, Yutani K, Miyano M (2006) Crystal structure of alanyl-tRNA synthetase editing-domain homolog (PH0574) from a hyperthermophile, Pyrococcus horikoshii OT3 at 1.45 Å resolution. Proteins 62: 1133–1137

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1991) Proofreading in vivo: editing of homocysteine by methionyl-tRNA syn-thetase in the yeast Saccharomyces cerevisiae. EMBO J 10:593–598

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1993a) Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA syn-thetase. J Biol Chem 268:6549–6553

    CAS  Google Scholar 

  • Jakubowski H (1993b) Energy cost of proofreading in vivo: The charging of methionine tRNAs in Escherichia coli. FASEB J 7:168–172

    CAS  Google Scholar 

  • Jakubowski H (1997) Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Biochemistry 36:11077–11085

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1999) Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA syn-thetase. Biochemistry 38:8088–8093

    PubMed  CAS  Google Scholar 

  • Jakubowski H, Fersht AR (1981) Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res 9:3105–3117

    PubMed  CAS  Google Scholar 

  • Kamtekar S, Kennedy WD, Wang J, Stathopoulos C, Söll D, Steitz TA (2003) The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases. Proc Natl Acad Sci USA 100:1673–1678

    PubMed  CAS  Google Scholar 

  • Karkhanis VA , Boniecki MT, Poruri K, Martinis SA (2006) A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria. J Biol Chem 281:33217–33225

    PubMed  CAS  Google Scholar 

  • Karkhanis VA , Mascarenhas AP, Martinis SA (2007) Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing. J Bacteriol 189: 8765–8768

    PubMed  CAS  Google Scholar 

  • Kast P, Hennecke H (1991) Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J Mol Biol 222:99–124

    PubMed  CAS  Google Scholar 

  • Kiick KL, van Hest JC, Tirrell DA (2000) Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed Engl 39:2148–2152

    PubMed  CAS  Google Scholar 

  • Kiick KL, Weberskirch R, Tirrell DA (2001) Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 502:25–30

    PubMed  CAS  Google Scholar 

  • Kim HY, Ghosh G, Schulman LH, Brunie S, Jakubowski H (1993) The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase. Proc Natl Acad Sci USA 90:11553–11557

    PubMed  CAS  Google Scholar 

  • Kirshenbaum K, Carrico IS, Tirrell DA (2002) Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. Chembiochem 3:235–237

    PubMed  Google Scholar 

  • Köhrer C, Xie L, Kellerer S, Varshney U, RajBhandary UL (2001) Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins. Proc Natl Acad Sci USA 98:14310–14315

    PubMed  Google Scholar 

  • Korencic D, Ahel I, Schelert J, Sacher M, Ruan B, Stathopoulos C, Blum P, Ibba M, Söll D (2004) A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc Natl Acad Sci USA 101:10260–10265

    PubMed  CAS  Google Scholar 

  • Kotik-Kogan O, Moor N, Tworowski D, Safro M (2005) Structural basis for discrimination of l-phenylalanine from l-tyrosine by phenylalanyl-tRNA synthetase. Structure 13:1799–1807

    PubMed  CAS  Google Scholar 

  • Kowal AK, Köhrer C, RajBhandary UL (2001) Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA 98:2268–2273

    PubMed  CAS  Google Scholar 

  • Kwon I, Tirrell DA (2007) Site-specific incorporation of tryptophan analogues into recombinant proteins in bacterial cells. J Am Chem Soc 129:10431–10437

    PubMed  CAS  Google Scholar 

  • Landès C, Perona JJ, Brunie S, Rould MA, Zelwer C, Steitz TA, Risler JL (1995) A structure-based multiple sequence alignment of all class I aminoacyl-tRNA synthetases. Biochimie 77:194–203

    PubMed  Google Scholar 

  • Larkin DC, Williams AM, Martinis SA, Fox GE (2002) Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules. Nucleic Acids Res 30:2103–2113

    PubMed  CAS  Google Scholar 

  • Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55

    PubMed  CAS  Google Scholar 

  • Levengood J, Ataide SF, Roy H, Ibba M (2004) Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases. J Biol Chem 279:17707–17714

    PubMed  CAS  Google Scholar 

  • Lin L, Schimmel P (1996) Mutational analysis suggests the same design for editing activities of two tRNA synthetases. Biochemistry 35:5596–5601

    PubMed  CAS  Google Scholar 

  • Lin SX, Baltzinger M, Remy P (1983) Fast kinetic study of yeast phenylalanyl-tRNA synthetase: an efficient discrimination between tyrosine and phenylalanine at the level of the aminoacy-ladenylate-enzyme complex. Biochemistry 22:681–689

    PubMed  CAS  Google Scholar 

  • Lin SX, Baltzinger M, Remy P (1984) Fast kinetic study of yeast phenylalanyl-tRNA synthetase: role of tRNAPhe in the discrimination between tyrosine and phenylalanine. Biochemistry 23:4109–4116

    PubMed  CAS  Google Scholar 

  • Lin L, Hale SP, Schimmel P (1996) Aminoacylation error correction. Nature 384:33–34

    PubMed  CAS  Google Scholar 

  • Lincecum TL, Jr., Tukalo M, Yaremchuk A, Mursinna RS, Williams AM, Sproat BS, Van Den Eynde W, Link A, Van Calenbergh S, Grotli M, Martinis SA, Cusack S (2003) Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol Cell 11:951–963

    PubMed  CAS  Google Scholar 

  • Ling J, Roy H, Ibba M (2007) Mechanism of tRNA-dependent editing in translational quality control. Proc Natl Acad Sci USA 104:72–77

    PubMed  CAS  Google Scholar 

  • Link AJ, Vink MK, Tirrell DA (2004) Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 126:10598–10602

    PubMed  CAS  Google Scholar 

  • Liu DR, Schultz PG (1999) Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci USA 96:4780–4785

    PubMed  CAS  Google Scholar 

  • Liu Y, Liao J, Zhu B, Wang ED, Ding J (2006) Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination. Biochem J 394:399–407

    PubMed  CAS  Google Scholar 

  • Loftfield RB (1963) The frequency of errors in protein biosynthesis. Biochem J 89:82–92

    PubMed  CAS  Google Scholar 

  • Loftfield RB, Vanderjagt D (1972) The frequency of errors in protein biosynthesis. Biochem J 128:1353–1356

    PubMed  CAS  Google Scholar 

  • Ludmerer SW, Schimmel P (1987) Construction and analysis of deletions in the amino-terminal extension of glutamine tRNA synthetase of Saccharomyces cerevisiae. J Biol Chem 262:10807–10813

    PubMed  CAS  Google Scholar 

  • Lue SW, Kelley SO (2005) An aminoacyl-tRNA synthetase with a defunct editing site. Biochemistry 44:3010–3016

    PubMed  CAS  Google Scholar 

  • Martinis SA, Schimmel P (1999) Aminoacyl tRNA synthetases. Escherichia coli and Salmonella: cellular and molecular biology. Neidhardt FC. Washington DC. ASM Press, pp 887–901

    Google Scholar 

  • Martinis SA, Plateau P, Cavarelli J, Florentz C (1999a) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J 18:4591–4596

    CAS  Google Scholar 

  • Martinis SA, Plateau P, Cavarelli J, Florentz C (1999b) Aminoacyl-tRNA synthetases: A new image for a classical family. Biochimie 81:683–700

    CAS  Google Scholar 

  • Mechulam Y, Schmitt E, Maveyraud L, Zelwer C, Nureki O, Yokoyama S, Konno M, Blanquet S (1999) Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. J Mol Biol 294:1287–1297

    PubMed  CAS  Google Scholar 

  • Mock ML, Michon T, van Hest JC, Tirrell DA (2006) Stereoselective incorporation of an unsatu-rated isoleucine analogue into a protein expressed in E. coli. ChemBioChem 7:83–87

    PubMed  CAS  Google Scholar 

  • Moor N, Kotik-Kogan O, Tworowski D, Sukhanova M, Safro M (2006) The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end. Biochemistry 45: 10572–10583

    PubMed  CAS  Google Scholar 

  • Moras D (1992) Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem Sci 17:159–164

    PubMed  CAS  Google Scholar 

  • Mosyak L, Reshetnikova L, Goldgur Y, Delarue M, Safro MG (1995) Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Biol 2:537–547

    PubMed  CAS  Google Scholar 

  • Murayama K, Kato-Murayama M, Katsura K, Uchikubo-Kamo T, Yamaguchi-Hirafuji M, Kawazoe M, Akasaka R, Hanawa-Suetsugu K, Hori-Takemoto C, Terada T, Shirouzu M, Yokoyama S (2005) Structure of a putative trans-editing enzyme for prolyl-tRNA synthetase from Aeropyrum perinix K1 at 1.7 Å resolution. Acta Crystallogr F Struc Biol Cryst Comm F61:26–29

    CAS  Google Scholar 

  • Mursinna RS, Martinis SA (2002) Rational design to block amino acid editing of a tRNA syn-thetase. J Am Chem Soc 124:7286–7287

    PubMed  CAS  Google Scholar 

  • Mursinna RS, Lincecum TL, Jr., Martinis SA (2001) A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Biochemistry 40: 5376–5381

    PubMed  CAS  Google Scholar 

  • Mursinna RS, Lee KW, Briggs JM, Martinis SA (2004) Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Biochemistry 43:155–165

    PubMed  CAS  Google Scholar 

  • Musier-Forsyth K, Stehlin C, Burke B, Liu H (1997) Understanding species-specific differences in substrate recognition by Escherichia coli and human prolyl-tRNA synthetases. Nucleic Acids Symp Ser 36:5–7

    PubMed  CAS  Google Scholar 

  • Nakama T, Nureki O, Yokoyama S (2001) Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem 276:47387–47393

    PubMed  CAS  Google Scholar 

  • Nangle LA, De Crecy Lagard V, Döring V, Schimmel P (2002) Genetic code ambiguity. Cell viability related to the severity of editing defects in mutant tRNA synthetases. J Biol Chem 277:45729–45733

    PubMed  CAS  Google Scholar 

  • Nangle LA, Motta CM, Schimmel P (2006) Global effects of mistranslation from an editing defect in mammalian cells. Chem Biol 13:1091–1100

    PubMed  CAS  Google Scholar 

  • Newberry KJ, Hou YM, Perona JJ (2002) Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. EMBO J 21:2778–2787

    PubMed  CAS  Google Scholar 

  • Nomanbhoy TK, Schimmel PR (2000) Misactivated amino acids translocate at similar rates across surface of a tRNA synthetase. Proc Natl Acad Sci USA 97:5119–5122

    PubMed  CAS  Google Scholar 

  • Nomanbhoy TK, Hendrickson TL, Schimmel P (1999) Transfer RNA-dependent translocation of misactivated amino acids to prevent errors in protein synthesis. Mol Cell 4:519–528

    PubMed  CAS  Google Scholar 

  • Nordin BE, Schimmel P (1999) RNA determinants for translational editing. Mischarging a mini-helix substrate by a tRNA synthetase. J Biol Chem 274:6835–6838

    PubMed  CAS  Google Scholar 

  • Nordin BE, Schimmel P (2002) Plasticity of recognition of the 3′-end of mischarged tRNA by class I aminoacyl-tRNA synthetases. J Biol Chem 277:20510–20517

    PubMed  CAS  Google Scholar 

  • Nordin BE, Schimmel P (2003) Transiently misacylated tRNA is a primer for editing of misacti-vated adenylates by class I aminoacyl-tRNA synthetases. Biochemistry 42:12989–12997

    PubMed  CAS  Google Scholar 

  • Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, Konno M, Hendrickson TL, Schimmel P, Yokoyama S (1998) Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science 280:578–582

    PubMed  CAS  Google Scholar 

  • Onesti S, Desogus G, Brevet A, Chen J, Plateau P, Blanquet S, Brick P (2000) Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding. Biochemistry 39:12853–12861

    PubMed  CAS  Google Scholar 

  • Onesti S, Miller AD, Brick P (1995) The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure 3:163–176

    PubMed  CAS  Google Scholar 

  • O'Donoghue P, Luthey-Schulten Z (2003) On the evolution of structure in aminoacyl-tRNA syn-thetases. Microbiol Mol Biol Rev 67:550–573

    PubMed  Google Scholar 

  • Pauling L (1958) The probability of errors in protein synthesis. In: Festschrift Arthur Stoll Siebzigsten Geburtstag, pp 597–602

    Google Scholar 

  • Perona JJ (2005) Two-step pathway to aminoacylated tRNA. Structure 13:1397–1398

    PubMed  CAS  Google Scholar 

  • Pezo V, Metzgar D, Hendrickson TL, Waas WF, Hazebrouck S, Döring V, Marliere P, Schimmel P, De Crécy-Lagard V (2004) Artificially ambiguous genetic code confers growth yield advantage. Proc Natl Acad Sci USA 101:8593–8597

    PubMed  CAS  Google Scholar 

  • Polycarpo C, Ambrogelly A, Ruan B, Tumbula-Hansen D, Ataide SF, Ishitani R, Yokoyama S, Nureki O, Ibba M, Söll D (2003) Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases. Mol Cell 12:287–294

    PubMed  CAS  Google Scholar 

  • Reshetnikova L, Moor N, Lavrik O, Vassylyev DG (1999) Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue. J Mol Biol 287:555–568

    PubMed  CAS  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001) Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–193

    Google Scholar 

  • Rock FL, Mao W, Yaremchuk A, Tukalo M, Crépin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MR (2007) An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761

    PubMed  CAS  Google Scholar 

  • Roy H, Ibba M (2006) Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA. Biochemistry 45: 9156–9162

    PubMed  CAS  Google Scholar 

  • Roy H, Ling J, Irnov M, Ibba M (2004) Post-transfer editing in vitro and in vivo by the beta subu-nit of phenylalanyl-tRNA synthetase. EMBO J 23:4639–4648

    PubMed  CAS  Google Scholar 

  • Roy H, Ling J, Alfonzo J, Ibba M (2005) Loss of editing activity during the evolution of mito-chondrial phenylalanyl-tRNA synthetase. J Biol Chem 280:38186–38192

    PubMed  CAS  Google Scholar 

  • Ruan B, Söll D (2005) The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNACys deacylase. J Biol Chem 280:25887–25891

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan R, Dock-Bregeon AC, Romby P, Caillet J, Springer M, Rees B, Ehresmann C, Ehresmann B, Moras D (1999) The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97:371–381

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan R, Dock-Bregeon AC, Rees B, Bovee M, Caillet J, Romby P, Francklyn CS, Moras D (2000) Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat Struct Biol 7:461–465

    PubMed  CAS  Google Scholar 

  • Santoro SW, Anderson JC, Lakshman V, Schultz PG (2003) An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. Nucleic Acids Res 31:6700–6709

    PubMed  CAS  Google Scholar 

  • Sasaki HM, Sekine S, Sengoku T, Fukunaga R, Hattori M, Utsunomiya Y, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S (2006) Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase. Proc Natl Acad Sci USA 103:14744–14749

    PubMed  CAS  Google Scholar 

  • Schimmel P, Giegé R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    PubMed  CAS  Google Scholar 

  • Schmidt E, Schimmel P (1994) Mutational isolation of a sieve for editing in a transfer RNA syn-thetase. Science 264:265–267

    PubMed  CAS  Google Scholar 

  • Schmidt E, Schimmel P (1995) Residues in a class I tRNA synthetase which determine selectivity of amino acid recognition in the context of tRNA. Biochemistry 34:11204–11210

    PubMed  CAS  Google Scholar 

  • Schreier AA, Schimmel PR (1972) Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophos-phate. Biochemistry 11:1582–1589

    PubMed  CAS  Google Scholar 

  • Serre L, Verdon G, Choinowski T, Hervouet N, Risler JL, Zelwer C (2001) How methionyl-tRNA synthetase creates its amino acid recognition pocket upon l-methionine binding. J Mol Biol 306:863–876

    PubMed  CAS  Google Scholar 

  • Sharma N, Furter R, Kast P, Tirrell DA (2000) Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett 467:37–40

    PubMed  CAS  Google Scholar 

  • Silvian LF, Wang J, Steitz TA (1999) Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285:1074–1077

    PubMed  CAS  Google Scholar 

  • Sokabe M, Okada A, Yao M, Nakashima T, Tanaka I (2005) Molecular basis of alanine discrimination in editing site. Proc Natl Acad Sci USA 102:11669–11674

    PubMed  CAS  Google Scholar 

  • Splan KE, Ignatov ME, Musier-Forsyth K (2008) Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase. J Biol Chem 283:7128–7134

    PubMed  CAS  Google Scholar 

  • Starzyk RM, Webster TA, Schimmel P (1987) Evidence for dispensable sequences inserted into a nucleotide fold. Science 237:1614–1618

    PubMed  CAS  Google Scholar 

  • Sternjohn J, Hati S, Siliciano PG, Musier-Forsyth K (2007) Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain. Proc Natl Acad Sci USA 104:2127–2132

    PubMed  Google Scholar 

  • Sugiura I, Nureki O, Ugaji-Yoshikawa Y, Kuwabara S, Shimada A, Tateno M, Lorber B, Giegé R, Moras D, Yokoyama S, Konno M (2000) The 2.0 Å crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. Structure Fold Des 8:197–208

    PubMed  CAS  Google Scholar 

  • Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci USA 103:9785–9789

    PubMed  CAS  Google Scholar 

  • Swairjo MA, Otero FJ, Yang XL, Lovato MA, Skene RJ, McRee DE, Ribas de Pouplana L, Schimmel P (2004) Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Mol Cell 13:829–841

    PubMed  CAS  Google Scholar 

  • Swairjo MA, Schimmel PR (2005) Breaking sieve for steric exclusion of a noncognate amino acid from active site of a tRNA synthetase. Proc Natl Acad Sci USA 102:988–993

    PubMed  CAS  Google Scholar 

  • Tamura K, Nameki N, Hasegawa T, Shimizu M, Himeno H (1994) Role of the CCA terminal sequence of tRNA(Val) in aminoacylation with valyl-tRNA synthetase. J Biol Chem 269:22173–22177

    PubMed  CAS  Google Scholar 

  • Tang Y, Tirrell DA (2002) Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry 41:10635–10645

    PubMed  CAS  Google Scholar 

  • Tardif KD, Horowitz J (2002) Transfer RNA determinants for translational editing by Escherichia coli valyl-tRNA synthetase. Nucleic Acids Res 30:2538–2545

    PubMed  CAS  Google Scholar 

  • Tardif KD, Liu M, Vitseva O, Hou YM, Horowitz J (2001) Misacylation and editing by Escherichia coli valyl-tRNA synthetase: Evidence for two tRNA binding sites. Biochemistry 40: 8118–8125

    PubMed  CAS  Google Scholar 

  • Terada T, Nureki O, Ishitani R, Ambrogelly A, Ibba M, Söll D, Yokoyama S (2002) Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nat Struct Biol 9: 257–262

    PubMed  CAS  Google Scholar 

  • Torres-Larios A, Dock-Bregeon AC, Romby P, Rees B, Sankaranarayanan R, Caillet J, Springer M, Ehresmann C, Ehresmann B, Moras D (2002) Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nat Struct Biol 9:343–347

    PubMed  CAS  Google Scholar 

  • Torres-Larios A, Sankaranarayanan R, Rees B, Dock-Bregeon AC, Moras D (2003) Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J Mol Biol 331:201–211

    PubMed  CAS  Google Scholar 

  • Tsui WC, Fersht AR (1981) Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Nucleic Acids Res 9:4627–4637

    PubMed  CAS  Google Scholar 

  • Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S (2005) The crystal structure of leucyl-tRNA synthetase complexed with tRNA(Leu) in the post-transfer-editing conformation. Nat Struct Mol Biol 12:923–930

    PubMed  CAS  Google Scholar 

  • Turner JM, Graziano J, Spraggon G, Schultz PG (2006) Structural plasticity of an aminoacyl-tRNA synthetase active site. Proc Natl Acad Sci USA 103:6483–6488

    PubMed  CAS  Google Scholar 

  • van Hest JC, Tirrell DA (1998) Efficient introduction of alkene functionality into proteins in vivo. FEBS Lett 428:68–70

    PubMed  Google Scholar 

  • von der Haar F, Cramer F (1976) Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: “chemical proofreading” preventing acylation of tRNA(I1e) with misactivated valine. Biochemistry 15:4131–4138

    PubMed  Google Scholar 

  • Vu MT, Martinis SA (2007) A unique insert of leucyl-tRNA synthetase is required for aminoacyla-tion and not amino acid editing. Biochemistry 46:5170–5176

    PubMed  CAS  Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    PubMed  CAS  Google Scholar 

  • Wang P, Tang Y, Tirrell DA (2003) Incorporation of trifluoroisoleucine into proteins in vivo. J Am Chem Soc 125:6900–6906

    PubMed  CAS  Google Scholar 

  • Webster T, Tsai H, Kula M, Mackie GA, Schimmel P (1984) Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science 226:1315–1317

    PubMed  CAS  Google Scholar 

  • Williams AM, Martinis SA (2006) Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Proc Natl Acad Sci USA 103:3586–3591

    PubMed  CAS  Google Scholar 

  • Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA synthetases —analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710

    PubMed  CAS  Google Scholar 

  • Wong FC, Beuning PJ, Nagan M, Shiba K, Musier-Forsyth K (2002) Functional role of the prokaryotic proline-tRNA synthetase insertion domain in amino acid editing. Biochemistry 41:7108–7115

    PubMed  CAS  Google Scholar 

  • Wong FC, Beuning PJ, Silvers C, Musier-Forsyth K (2003) An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. J Biol Chem 278:52857–52864

    PubMed  CAS  Google Scholar 

  • Wu N, Deiters A, Cropp TA, King D, Schultz PG (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126:14306–14307

    PubMed  CAS  Google Scholar 

  • Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    PubMed  CAS  Google Scholar 

  • Xu MG, Li J, Du X, Wang ED (2004) Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability. Biochem Biophys Res Commun 318:11–16

    PubMed  CAS  Google Scholar 

  • Yamane T, Hopfield JJ (1977) Experimental evidence for kinetic proofreading in the aminoacyla-tion of tRNA by synthetase. Proc Natl Acad Sci USA 74:2246–2250

    PubMed  CAS  Google Scholar 

  • Yaremchuk A, Tukalo M, Grotli M, Cusack S (2001) A succession of substrate induced confor-mational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J Mol Biol 309:989–1002

    PubMed  CAS  Google Scholar 

  • Yarus M (1972) Phenylalanyl-tRNA synthetase and isoleucyl-tRNAPhe: A possible verification mechanism for aminoacyl-tRNA. Proc Natl Acad Sci USA 69:1915–1919

    PubMed  CAS  Google Scholar 

  • Yarus M (1973) Verification of misacylated tRNAphe is apparently carried out only by phenylalanyl-tRNA synthetase. Nat New Biol 245:5–6

    PubMed  CAS  Google Scholar 

  • Zhai Y, Martinis SA (2005) Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism. Biochemistry 44:15437–15443

    PubMed  CAS  Google Scholar 

  • Zhai Y, Nawaz MH, Lee KW, Kirkbride E, Briggs JM, Martinis SA (2007) Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase. Biochemistry 46:3331–3337

    PubMed  CAS  Google Scholar 

  • Zhang H, Huang K, Li Z, Banerjei L, Fisher KE, Grishin N V, Eisenstein E, Herzberg O (2000) Crystal structure of YbaK protein from Haemophilus influenzae (HI1434) at 1.8 Å resolution: Functional implications. Proteins 40:86–97

    PubMed  CAS  Google Scholar 

  • Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King DS, Schultz PG (2004) Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc Natl Acad Sci USA 101:8882–8887

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mascarenhas, A.P., An, S., Rosen, A.E., Martinis, S.A., Musier-Forsyth, K. (2009). Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases. In: Köhrer, C., RajBhandary, U.L. (eds) Protein Engineering. Nucleic Acids and Molecular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70941-1_6

Download citation

Publish with us

Policies and ethics