Skip to main content

The Radiobiological Rationale for Hypofractionation of Lung and Liver Tumors

  • Chapter
Treating Tumors that Move with Respiration

Abstract

The radiobiological concepts of intrinsic radiation sensitivity, oxygenation, and dose-volume effects have been reasonably delineated in the context of conventional radiotherapy (RT). Yet, for circumstances in which large doses are delivered in single-fraction or hypofractionated regimens, these intrinsic radiobiological concepts are relatively poorly understood. Stereotactic radiosurgery (SRS) is a radical departure from the current RT approach in which large fields, cone downs, and protracted therapies are used for normal tissue preservation and to maximize the therapeutic ratio. SRS is the precise, highly focused delivery of radiation beams to lesions whereby only a fraction of the total dose is received by surrounding normal tissues. The usage of SRS is currently expanding well beyond its roots as an ablative tool for thalamotomies, arteriovenous malformations, and cranial vault tumors. Hence, widely believed dogmas concerning the tolerance of critical structures to conventionally fractionated doses, such as the dose-volume effect, total dose, and time (latency) dependency, have to be reevaluated for hypofractionated radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coutard H. Principles of x-ray therapy of malignant diseases. Lancet 1934;2:1–8.

    Article  Google Scholar 

  2. Regaud C, Ferroux R. Discordance des effects de rayons X, d’une part dans le testicule, par le fractioment de la dose. C R Soc Biol 1927;97:431–434.

    Google Scholar 

  3. Baclesse F. Hyperfractionation. Am J Roentgenol Radium Ther Nucl Med 1964;91:32–36.

    PubMed  CAS  Google Scholar 

  4. Miescher G. Erfolge der karzinombehandlung an der Dermatologischen Klink Zurich. Einzeitige Hochstdosis and Fraktionierte Behandlung. Strahlentherapie 1934;49:65–81.

    Google Scholar 

  5. Strandqvist M. Studien uber die cumulative Wirkung der Rontgenstrahlen bei Fraktionierung. Erfahrungen aus dem Radiumhemmet an 280 Haut und Lippenkarzinomen. Acta Radiol. 1944;55(Suppl):1–300.

    Google Scholar 

  6. Ellis F. Dose, time and fractionation: a clinical hypothesis. Clin Radiol 1969;20:1–7.

    Article  PubMed  CAS  Google Scholar 

  7. Withers HR, Thames HD, Jr., Peters LJ. A new isoeffect curve for change in dose per fraction. Radiother Oncol 1983;1:187–191.

    Article  PubMed  CAS  Google Scholar 

  8. Puck TT, Markus PI. Action of x-rays on mammalian cells. J Exp Med 1956;103:653–666.

    Article  PubMed  CAS  Google Scholar 

  9. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 2006;6:702–713.

    Article  PubMed  CAS  Google Scholar 

  10. Bentzen SM, Saunders MI, Dische S. Repair halftimes estimated from observations of treatment-related morbidity after CHART or conventional radiotherapy in head and neck cancer. Radiother Oncol 1999;53:219–226.

    Article  PubMed  CAS  Google Scholar 

  11. Orton CG. High-dose-rate brachytherapy may be radiobiologically superior to low-dose rate due to slow repair of late-responding normal tissue cells. Int J Radiat Oncol Biol Phys 2001;49:183–189.

    Article  PubMed  CAS  Google Scholar 

  12. Guttenberger R, Thames HD, Ang KK. Is the experience with CHART compatible with experimental data? A new model of repair kinetics and computer simulations. Radiother Oncol 1992;25:280–286.

    Article  PubMed  CAS  Google Scholar 

  13. Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004;5:429–441.

    Article  PubMed  CAS  Google Scholar 

  14. Moeller BJ, Dreher MR, Rabbani ZN, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 2005;8:99–110.

    Article  PubMed  CAS  Google Scholar 

  15. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003;300:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  16. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001;293:293–297.

    Article  PubMed  CAS  Google Scholar 

  17. Ch’ang HJ, Maj JG, Paris F, et al. ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 2005;11:484–490.

    Article  CAS  Google Scholar 

  18. Lavin MF, Birrell G, Chen P, et al. ATM signaling and genomic stability in response to DNA damage. Mutat Res 2005;569:123–132.

    PubMed  CAS  Google Scholar 

  19. Lavin MF, Delia D, Chessa L. ATM and the DNA damage response. Workshop on ataxia-telangiectasia and related syndromes. EMBO Rep 2006;7:154–160.

    Article  PubMed  CAS  Google Scholar 

  20. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase [see comments]. Science 1995;268:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  21. Elson A, Wang Y, Daugherty CJ, et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 1996;93:13084–13089.

    Article  PubMed  CAS  Google Scholar 

  22. Herzog KH, Chong MJ, Kapsetaki M, et al. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 1998;280:1089–1091.

    Article  PubMed  CAS  Google Scholar 

  23. Heyer BS, MacAuley A, Behrendtsen O, et al. Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Genes Dev 2000;14:2072–2084.

    PubMed  CAS  Google Scholar 

  24. Haimovitz-Friedman A. Radiation-induced signal transduction and stress response. Radiat Res 1998;150-S102–108.

    Article  PubMed  CAS  Google Scholar 

  25. Liao WC, Haimovitz-Friedman A, Persaud RS, et al. Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem 1999;274:17908–17917.

    Article  PubMed  CAS  Google Scholar 

  26. Weichselbaum R. Radiation’s outer limits. Nat Med 2005;11:477–478.

    Article  PubMed  CAS  Google Scholar 

  27. Guha C, Guha U, Tribius S, et al. Antisense ATM gene therapy: a strategy to increase the radiosensitivity of human tumors. Gene Ther 2000;7:852–858.

    Article  PubMed  CAS  Google Scholar 

  28. Fan Z, Chakravarty P, Alfieri A, et al. Adenovirus-mediated antisense ATM gene transfer sensitizes prostate cancer cells to radiation. Cancer Gene Ther 2000;7:1307–1314.

    Article  PubMed  CAS  Google Scholar 

  29. Hickson I, Zhao Y, Richardson CJ, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004;64:9152–9159.

    Article  PubMed  CAS  Google Scholar 

  30. Fuks Z, Persaud RS, Alfieri A, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 1994;54:2582–2590.

    PubMed  CAS  Google Scholar 

  31. Maj JG, Paris F, Haimovitz-Friedman A, et al. Microvascular function regulates intestinal crypt response to radiation. Cancer Res 2003;63:4338–4341.

    PubMed  CAS  Google Scholar 

  32. Potten CS, O’Shea JA, Farrell CL, et al. The effects of repeated doses of keratinocyte growth factor on cell proliferation in the cellular hierarchy of the crypts of the murine small intestine. Cell Growth Differ 2001;12:265–275.

    PubMed  CAS  Google Scholar 

  33. Du XX, Doerschuk CM, Orazi A, et al. A bone marrow stromal-derived growth factor, interleukin-11, stimulates recovery of small intestinal mucosal cells after cytoablative therapy. Blood 1994;83:33–37.

    PubMed  CAS  Google Scholar 

  34. Bearman SI. The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood 1995;85:3005–3020.

    PubMed  CAS  Google Scholar 

  35. Lawrence TS, Robertson JM, Anscher MS, et al. Hepatic toxicity resulting from cancer treatment. International Journal of Radiation Oncology, Biology, Physics 1995;31:1237–1248.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng JC, Wu JK, Lee PC, et al. Biologic susceptibility of hepatocellular carcinoma patients treated with radiotherapy to radiation-induced liver disease. Int J Radiat Oncol Biol Phys 2004;60:1502–1509.

    Article  PubMed  Google Scholar 

  37. Guha C, Sharma A, Gupta S, et al. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation. Cancer Res 1999;59:5871–5874.

    PubMed  CAS  Google Scholar 

  38. Guha C. Unpublished findings.

    Google Scholar 

  39. Seong J, Kim SH, Chung EJ, et al. Early alteration in TGF-beta mRNA expression in irradiated rat liver. Int J Radiat Oncol Biol Phys 2000;46:639–643.

    Article  PubMed  CAS  Google Scholar 

  40. Guha C, Parashar B, Deb NJ, et al. Liver irradiation: a potential preparative regimen for hepatocyte transplantation. Int J Radiat Oncol Biol Phys 2001;49:451–457.

    Article  PubMed  CAS  Google Scholar 

  41. Guha C, Parashar B, Roy-Chowdhury N, et al. Complete long-term normalization of serum bilirubin levels in Gunn rats after hepatocyte transplantation following partial hepatectomy and liver irradiation. Hepatology 1999;30:108.

    Google Scholar 

  42. Guha C, Yamanouchi K, Jiang J, et al. Feasibility of Hepatocyte Transplantation-Based Therapies for Primary Hyperoxalurias. Am J Nephrol 2005;25:161–170.

    Article  PubMed  Google Scholar 

  43. Zhou H, Yamanouchi K, Liu L, et al. A new paradigm for tissue regeneration: preparative irradiation for cell-based therapies as an alternative to organ transplantation. Int J Radiat Oncol Biol Phys 2006;66:S98–S99.

    Google Scholar 

  44. Lawrence TS, Dworzanin LM, Walker-Andrews SC, et al. Treatment of cancers involving the liver and porta hepatis with external beam irradiation and intraarterial hepatic fluorodeoxyuridine. International Journal of Radiation Oncology, Biology, Physics 1991;20:555–561.

    PubMed  CAS  Google Scholar 

  45. Robertson JM, Lawrence TS, Dworzanin LM, et al. Treatment of primary hepatobiliary cancers with conformal radiation therapy and regional chemotherapy. Journal of Clinical Oncology 1993;11:1286–1293.

    PubMed  CAS  Google Scholar 

  46. Robertson JM, Lawrence TS, Andrews JC, et al. Long-term results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. International Journal of Radiation Oncology, Biology, Physics 1997;37:325–330.

    Article  PubMed  CAS  Google Scholar 

  47. Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol 2000;18:2210–2218.

    PubMed  CAS  Google Scholar 

  48. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 1985;8:S13–19.

    Article  PubMed  CAS  Google Scholar 

  49. Lyman JT. Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 1992;22:247–250.

    PubMed  CAS  Google Scholar 

  50. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–122.

    PubMed  CAS  Google Scholar 

  51. Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991;21:123–135.

    PubMed  CAS  Google Scholar 

  52. Dawson LA, Normolle D, Balter JM, et al. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002;53:810–821.

    Article  PubMed  Google Scholar 

  53. Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 2005;15:279–283.

    Article  PubMed  Google Scholar 

  54. Xu ZY, Liang SX, Zhu J, et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma. Int J Radiat Oncol Biol Phys 2006;65:189–195.

    Article  PubMed  Google Scholar 

  55. Wada H, Takai Y, Nemoto K, et al. Univariate analysis of factors correlated with tumor control probability of three-dimensional conformal hypofractionated highdose radiotherapy for small pulmonary or hepatic tumors. Int J Radiat Oncol Biol Phys 2004;58:1114–1120.

    PubMed  Google Scholar 

  56. Herfarth KK, Debus J, Lohr F, et al. Stereotactic singledose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 2001;19:164–170.

    PubMed  CAS  Google Scholar 

  57. Blomgren H, Lax I, Naslund I, et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 1995;34:861–870.

    PubMed  CAS  Google Scholar 

  58. Yamasaki SA, Marn CS, Francis IR, et al. High-dose localized radiation therapy for treatment of hepatic malignant tumors: CT findings and their relation to radiation hepatitis. AJR. American Journal of Roentgenology 1995;165:79–84.

    PubMed  CAS  Google Scholar 

  59. Marks LB, Yu X, Vujaskovic Z, et al. Radiation-induced lung injury. Semin Radiat Oncol 2003;13:333–345.

    Article  PubMed  Google Scholar 

  60. Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 2006;66:1281–1293.

    PubMed  Google Scholar 

  61. Kong FM, Anscher MS, Sporn TA, et al. Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor (M6P/IGF2R) locus predisposes patients to radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2001;49:35–41.

    Article  PubMed  CAS  Google Scholar 

  62. O’Sullivan B, Levin W. Late radiation-related fibrosis: pathogenesis, manifestations, and current management. Semin Radiat Oncol 2003;13:274–289.

    Article  PubMed  Google Scholar 

  63. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis. Radiotherapy & Oncology 1995;35:83–90.

    Article  CAS  Google Scholar 

  64. Anscher MS, Murase T, Prescott DM, et al. Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 1994;30:671–676.

    PubMed  CAS  Google Scholar 

  65. Anscher MS, Kong FM, Andrews K, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 1998;41:1029–1035.

    Article  PubMed  CAS  Google Scholar 

  66. Marks LB. Dosimetric predictors of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2002;54:313–316.

    Article  PubMed  Google Scholar 

  67. Miller KL, Shafman TD, Marks LB. A practical approach to pulmonary risk assessment in the radiotherapy of lung cancer. Semin Radiat Oncol 2004;14:298–307.

    Article  PubMed  Google Scholar 

  68. Kwa SL, Lebesque JV, Theuws JC, et al. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 1998;42:1–9.

    Article  PubMed  CAS  Google Scholar 

  69. Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999;45:323–329.

    Article  PubMed  CAS  Google Scholar 

  70. Bradley J, Graham MV, Winter K, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005;61:318–328.

    Article  PubMed  Google Scholar 

  71. Tucker SL, Liu HH, Wang S, et al. Dose-volume modeling of the risk of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 2006;66:754–761.

    PubMed  Google Scholar 

  72. Yorke ED, Jackson A, Rosenzweig KE, et al. Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2002;54:329–339.

    Article  PubMed  Google Scholar 

  73. Seppenwoolde Y, Muller SH, Theuws JC, et al. Radiation dose-effect relations and local recovery in perfusion for patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2000;47:681–690.

    Article  PubMed  CAS  Google Scholar 

  74. Lind PA, Marks LB, Hollis D, et al. Receiver operating characteristic curves to assess predictors of radiatio-induced symptomatic lung injury. Int J Radiat Oncol Biol Phys 2002;54:340–347.

    Article  PubMed  Google Scholar 

  75. Gopal R, Tucker SL, Komaki R, et al. The relationship between local dose and loss of function for irradiated lung. Int J Radiat Oncol Biol Phys 2003;56:106–113.

    Article  PubMed  Google Scholar 

  76. Kyas I, Hof H, Debus J, et al. Prediction of radiation-induced changes in the lung after stereotactic radiosurgery of nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys 2006.

    Google Scholar 

  77. Xia T, Li H, Sun Q, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006;66:117–125.

    Article  PubMed  Google Scholar 

  78. Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 2003;124:1946–1955.

    Article  PubMed  Google Scholar 

  79. Kavanagh BD, McGarry RC, Timmerman RD. Extracranial radiosurgery (stereotactic body radiation therapy) for oligometastases. Semin Radiat Oncol 2006;16:77–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alfieri, A., Rossinow, J., Garg, M., Kalnicki, S., Guha, C. (2007). The Radiobiological Rationale for Hypofractionation of Lung and Liver Tumors. In: Urschel, H.C., Kresl, J.J., Luketich, J.D., Papiez, L., Timmerman, R.D., Schulz, R.A. (eds) Treating Tumors that Move with Respiration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69886-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69886-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69885-2

  • Online ISBN: 978-3-540-69886-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics