Skip to main content

Image-Guidance in External Beam Planning for Locally Advanced Cervical Cancer

  • Chapter
  • First Online:

Abstract

The use of highly conformal external beam radiotherapy may decrease toxicity and enhance tumor control. However, the marked tumor regression seen in cervix cancer during radiotherapy, combined with the complex organ motion of surrounding normal tissues, could also result in geographical target miss without appropriate imaging, contouring and planning expertise. As such, image guidance plays a vital role in the planning and treatment aspects of cervix cancer when highly conformal treatment is being considered. This chapter highlights the current data on tumor motion and regression as well as the emerging importance of the impact of normal tissue motion and deformation on radiotherapy planning and treatment. As emergent technologies advance, the feasibility of adaptive strategies will undoubtedly result in improvements in the outcomes of these patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eifel PJ et al. Time course and outcome of central recurrence after radiation therapy for carcinoma of the cervix. Int J Gynecol Cancer. 2006;16(3):1106–11.

    Article  PubMed  CAS  Google Scholar 

  2. Eifel P et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22(5):872–80.

    Article  PubMed  Google Scholar 

  3. Kirwan J et al. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol. 2003;68(3):217–26.

    Article  PubMed  Google Scholar 

  4. Gerszten K et al. Feasibility of concurrent cisplatin and extended field radiation therapy (EFRT) using intensity-modulated radiotherapy (IMRT) for carcinoma of the cervix. Gynecol Oncol. 2006;102(2):182–8.

    Article  PubMed  CAS  Google Scholar 

  5. Roeske JC et al. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy. Radiother Oncol. 2003;69(2):201–7.

    Article  PubMed  Google Scholar 

  6. Beriwal S et al. Early clinical outcome with concurrent chemotherapy and extended-field, intensity-modulated radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2007;68(1):166–71.

    Article  PubMed  Google Scholar 

  7. Kavanagh BD et al. Clinical application of intensity-modulated radiotherapy for locally advanced cervical cancer. Semin Radiat Oncol. 2002;12(3):260–71.

    Article  PubMed  Google Scholar 

  8. Salama JK et al. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2006;65(4):1170–6.

    Article  PubMed  Google Scholar 

  9. Ahamad A et al. Intensity-modulated radiation therapy after hysterectomy: comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size. Int J Radiat Oncol Biol Phys. 2005;62(4):1117–24.

    Article  PubMed  Google Scholar 

  10. Lim K et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70(1):126–33.

    Article  PubMed  Google Scholar 

  11. Mayr NA et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2002;52(1):14–22.

    Article  PubMed  Google Scholar 

  12. Nam H et al. The prognostic significance of tumor volume regression during radiotherapy and concurrent chemoradiotherapy for cervical cancer using MRI. Gynecol Oncol. 2007;107(2):320–5.

    Article  PubMed  Google Scholar 

  13. Mayr NA et al. Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol. 2006;187(1):65–72.

    Article  PubMed  Google Scholar 

  14. Kaatee RS et al. Detection of organ movement in cervix cancer patients using a fluoroscopic electronic portal imaging device and radiopaque markers. Int J Radiat Oncol Biol Phys. 2002;54(2):576–83.

    Article  PubMed  Google Scholar 

  15. Lee CM, Shrieve DC, Gaffney DK. Rapid involution and mobility of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2004;58(2):625–30.

    Article  PubMed  Google Scholar 

  16. Yamamoto R et al. High dose three-dimensional conformal boost (3DCB) using an orthogonal diagnostic X-ray set-up for patients with gynecological malignancy: a new application of real-time tumor-tracking system. Radiother Oncol. 2004;73(2):219–22.

    Article  PubMed  Google Scholar 

  17. Buchali A et al. Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynecological cancer. Radiother Oncol. 1999;52(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  18. Lee JE et al. Interfractional variation of uterine position during radical RT: weekly CT evaluation. Gynecol Oncol. 2007;104(1):145–51.

    Article  PubMed  Google Scholar 

  19. Li XA et al. Interfractional variations in patient setup and anatomic change assessed by daily computed tomography. Int J Radiat Oncol Biol Phys. 2007;68(2):581–91.

    Article  PubMed  Google Scholar 

  20. Beadle B.M et al. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer. Int J Radiat Oncol Biol Phys. 2009;73(1):235–41. Epub 2008 May 29.

    Google Scholar 

  21. Chan P et al. Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: a cinematic-MRI point-of-interest study. Int J Radiat Oncol Biol Phys. 2008;70(5):1507–15.

    Article  PubMed  Google Scholar 

  22. van de Bunt L et al. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88:233–40.

    Article  PubMed  Google Scholar 

  23. Huh SJ, Park W, Han Y. Interfractional variation in position of the uterus during radical radiotherapy for cervical cancer. Radiother Oncol. 2004;71(1):73–9.

    Article  PubMed  Google Scholar 

  24. Taylor A, Powell MEB. An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynecological cancer. Radiother Oncol. 2008;88(2):250–7.

    Article  PubMed  Google Scholar 

  25. van de Bunt L et al. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006;64(1):189–96.

    Article  PubMed  Google Scholar 

  26. Brock KK et al. Accuracy of finite element model-based multi-organ deformable image registration. Med Phys. 2005;32(6):1647–59.

    Article  PubMed  CAS  Google Scholar 

  27. Lim K et al. Pelvic Radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int J Radiat Oncol Biol Phys. 2009; 74(1):304–12.

    Article  PubMed  CAS  Google Scholar 

  28. Lim K et al. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer. Int J Radiat Oncol Biol Phys. 2010 May 14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Lim, K., Milosevic, M., Brock, K., Fyles, A. (2011). Image-Guidance in External Beam Planning for Locally Advanced Cervical Cancer. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics