Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

Maize is the most diverse crop plant analyzed at both morphological and molecular levels (Anderson and Cutler 1942; Brown 1949, 1985; Buckler et al. 2006; Duvick 1981; Galinat 1961; Goodman 1968; Ho et al. 2005; Iltis 1972; Timothy and Goodman 1979; Vigouroux et al. 2005; Xia et al. 2005). Enormous levels of allelic polymorphism exist in maize (Chin et al. 1996; Guo et al. 2004; Goodman and Stuber 1983; Stuber et al. 1980) and this diversity has allowed for selection of beneficial agronomic traits that have been utilized in breeding over the millennia (Dudley 1988; Pollak 2003; Vigouroux et al. 2002; Yamasaki et al. 2005). Visible phenotypic trait diversity due to natural allelic variation or induced mutation has allowed a greater understanding of maize biology, which can also lead to agronomic improvements (Coe 2001; Peterson and Bianchi 1999; Rhoades 1984; Sachs 2005). Maize germplasm stock centers exist to categorize, preserve, maintain, and distribute this genetic diversity to researchers, breeders, educators, and others who can utilize this variation (De Vincente 2004; Dillmann et al. 1997; Hoisington et al. 1999; Troyer 1990). These genetic resources in maize have proven to be extremely useful and germplasm centers will ensure that they continue to be so.

Maize genetic resources are divided into two major categories: (1) genetic stocks and (2) germplasm accessions (Bird 1982; Bretting and Widrlechner 1995; Bretting and Widrlechner 1995; Brown and Goodman 1977; Crossa et al. 1994; Goodman 1990; Janick 1989; Scholl et al. 2003; Shands 1990, 1995; Shands et al. 1989; Taba et al. 2004; White et al. 1989; Wilson et al. 1985). The Maize Genetics Cooperation Stock Center (MGCSC) specializes in maize genetic stocks. Other types of maize and wild Zea germplasm are maintained and distributed by the North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa. Maize germplasm can also be obtained from Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Mexico. CIMMYT specializes in tropical germplasm. The stocks of all three collections are backed up at the National Center for Genetic Resources Preservation (NCGRP) in Fort Collins, Colorado.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleman M, Freeling M (1986) The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112:107–119

    PubMed  CAS  Google Scholar 

  • Anderson EG (1948) On the frequency and transmitted chromosome alterations and gene mutations induced by atomic bomb radiations in maize. Proc Natl Acad Sci USA 34:387–390

    Article  CAS  Google Scholar 

  • Anderson E, Cutler HC, (1942) Races of Zea mays: I. Their recognition and classification. Ann Missouri Bot Gard 29:69–88

    Article  Google Scholar 

  • Bennetzen JL (1996) The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204:195–229

    PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP, (1995) Cloning and characterization of the maize an1 gene. Plant Cell 7:75–84

    Article  PubMed  CAS  Google Scholar 

  • Bird R McK (1982) Maize and teosinte germplasm banks. In: Sheridan WF (ed) Maize for biological research. Plant Molecular Biology Association, Charlottesville, pp 351–356

    Google Scholar 

  • Bretting Sachs MM (1995) Maize genetic resource management. Am J Bot 82:7–8

    Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Plant Breed Rev 13:11–86

    Google Scholar 

  • Brown WL (1949) Numbers and distribution of chromosome knobs in United States maize. Genetics 34:524–536

    Google Scholar 

  • Brown WL (1985) Maize variability of potential interest to plant molecular geneticists. Maydica 30:225–233

    Google Scholar 

  • Brown WL, Goodman, MM (1977) Races of corn. In: Sprague GF (ed) Corn and corn improvement. American Society of Agronomy, Madison, pp 49–88

    Google Scholar 

  • Brutnell TP (2002) Transposon tagging in maize. Funct Integr Genomics 2:4–12

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176

    Article  PubMed  CAS  Google Scholar 

  • Carlson WR (1988) The cytogenetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, pp 259–344

    Google Scholar 

  • Carson C, Robertson J, Coe E (2004) High-volume mapping of maize mutants with simple sequence repeat markers. Plant Missouri Biol Rep 22:131–143

    Article  CAS  Google Scholar 

  • Chandler VL, Hardeman KJ (1992) The Mu elements of Zea mays. Adv Genet 30:77–122

    Article  PubMed  CAS  Google Scholar 

  • Chin E, Senior L, Shu H, Smith JSC (1996) Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39:866–873

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Hake S (2005) Regulation of developmental transitions. Curr Opin Plant Biol 8:67–70

    Article  PubMed  Google Scholar 

  • Coe EH (2001) The origins of maize genetics. Nat Rev Genet 2:898–905

    Article  PubMed  CAS  Google Scholar 

  • Coe EH, Neuffer MG, Hoisington DA (1988) The genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, pp 81–258

    Google Scholar 

  • Cook RJ (1998) Toward a successful multinational crop plant genome initiative. Proc Natl Acad Sci USA 95:1993–1995

    Article  PubMed  CAS  Google Scholar 

  • Cowperthwaite M, Park W, Xu Z, Yan X, Maurais S, Dooner HK (2002) Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Taba S, Eberhart SA, Bretting P, Vencovsky R (1994) Practical considerations for maintaining germplasm in maize. Theor Appl Genet 89:98–95

    Google Scholar 

  • De Vincente MC (ed) (2004) The evolving role of genebanks in the fast-developing field of molecular genetics. Issues in genetic resources no. 11. Genetic Resources Science and Technology, IPGRI, Rome

    Google Scholar 

  • Dillmann C, BarHen A, Guerin D, Charcosset A, Murigneux A (1997) Comparison of RFLP and morphological distances between maize Zea mays L. inbred lines. Consequences for germplasm protection purposes. Theor Appl Genet 95:92–102

    Article  CAS  Google Scholar 

  • Dudley JW (1988) Evaluation of maize populations as sources of favorable alleles. Crop Sci 28:486–490

    Google Scholar 

  • Duvick DN (1981) Genetic diversity in corn improvement. Proc 36th Annual Corn and Sorghum Research Conference, pp 48–60

    Google Scholar 

  • Einset J (1943) Chromosome length in relation to transmission frequency of maize trisomics. Genetics 28:349–364

    PubMed  CAS  Google Scholar 

  • Fernandes Dong Schneider B, Morrow DJ, Nan G-L, Brendel V, Walbot V (2004) Genomewide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5:R82

    Article  Google Scholar 

  • Freeling M, Walbot V (1994) The maize handbook. Springer, New York

    Google Scholar 

  • Galinat WC (1961) Corn's evolution and its significance for breeding. Econ Bot 15:320–325

    Google Scholar 

  • Goodman MM (1968) The races of maize: I. Use of multivariate analysis of variance to measure morphological similarity. Crop Sci 8:693–698

    Google Scholar 

  • Goodman MM (1990) Genetic and germ plasm stocks worth conserving. J Hered 81:11–16

    PubMed  CAS  Google Scholar 

  • Goodman MM, Stuber CW (1983) Maize. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, part B. Elsevier, Amsterdam, pp 1–33

    Google Scholar 

  • Guo M, Rupe M, Zinselmeier C, Habben J, Bowen B, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  PubMed  CAS  Google Scholar 

  • Hanley S, Edwards D, Stevenson D, Haines S, Hegarty M, Schuch W, Edwards KJ (2000) Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays. Plant J 23:557–566

    Article  PubMed  CAS  Google Scholar 

  • Ho JC, Kresovich S, Lamkey KR (2005) Extent and distribution of genetic variation in US maize: historically important lines and their open-pollinated Dent and Flint progenitors. Crop Sci 45:1891–1900

    Article  CAS  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut J, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Article  PubMed  CAS  Google Scholar 

  • Iltis HH (1972) Taxonomy of Zea mays. Phytologia 23:248–249

    Google Scholar 

  • Janick J (ed) (1989) The national plant germplasm system of the United States. Plant Breed Rev 7:1–230

    Google Scholar 

  • Kass LB, Bonneuil C, Coe EH Jr (2005) Cornfests, cornfabs and cooperation: the origins and beginnings of the Maize Genetics Cooperation News Letter. Genetics 169:1787–1797

    PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–821

    Article  PubMed  CAS  Google Scholar 

  • Kolkman JM, Conrad LJ, Farmer PR, Hardeman K, Ahern KR, Lewis PE, Sawers RJ, Lebejko S, Chomet P, Brutnell TP (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169:981–995

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Seigfried TE, Brendel V (2005) The maize genetics and genomics database. The community resource for access to diverse maize data. Plant Physiol 138:55–58

    Article  PubMed  CAS  Google Scholar 

  • Lee M (1998) Genome projects and gene pools: new germplasm for plant breeding? Proc Natl Acad Sci USA 95:2001–2004

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Missouri17 (IBM) population. Plant Missouri Biol 48:453–461

    Article  CAS  Google Scholar 

  • Liu KJ, Goodman MM, Muse S, Smith JSC, Buckler E, Doebley JF (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117– 2128

    PubMed  CAS  Google Scholar 

  • Longley AE (1961) Breakage points for four corn translocation series and other corn chromosome aberrations maintained at the California Institute of Technology. USDA Crops Research ARS 34:16

    Google Scholar 

  • Lunde CF, Morrow DJ, Roy LM, Walbot V (2003) Progress in maize gene discovery: a project update. Funct Integr Genomics 3:25–32

    PubMed  CAS  Google Scholar 

  • Ma Z, Dooner HK (2004) Establishing an Ac/Ds-based enhancer detection and gene trap system in maize. Plant J 37:92–103

    Article  PubMed  CAS  Google Scholar 

  • May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz P, Roh D, Pan X, Stein L, Freeling M, Alexander DE, Martienssen RA (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000). Targeted screening for induced mutations. Nat Biotech 18:455–457

    Article  CAS  Google Scholar 

  • McGinnis K, Chandler V, Cone KC, Kaeppler HF, Kaeppler SM, Kerschen A, Pikaard CS, Richards E, Sidorenko LV, Smith T, Springer N, Wulan T (2005) Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol 392:1–24

    Article  PubMed  CAS  Google Scholar 

  • Meeley B, Briggs SP (1995) Reverse genetics for maize. Maize Genet Newsl 69:67–82

    Google Scholar 

  • Mikel MA (2006) Availability and analysis of proprietary Dent corn inbred lines with expired U.S. plant variety protection. Crop Sci 46:2555–2560

    Article  Google Scholar 

  • National Research Council of the National Academies (2002) Committee on Objectives for the National Plant Genome Initiative: the National Plant Genome Initiative: Objectives for 2003–2008. National Academies Press, Washington, DC. http://www.nap.edu/books/0309085217/html/

    Google Scholar 

  • Neuffer MG, Coe EH, Wessler SR (1997) The mutants of maize. Cold Spring Harbor Press, New Yo r k

    Google Scholar 

  • Ostheimer G, Williams-Carrier R, Belcher S, Osborne E, Gierke J, Barkan A (2003) Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J 22:3919–3929

    Article  PubMed  CAS  Google Scholar 

  • Peterson PA, Bianchi A (1999) Maize genetics and breeding in the 20th century. World Scientific Publishing Co., Hackensack

    Google Scholar 

  • Pollak LM (2003) The history and success of the public—private project on germplasm enhancement of maize (GEM). Adv Agron 78:45–87

    Article  Google Scholar 

  • Raizada M, Nan G, Walbot V (2001) Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell 13:1587–1608

    Article  PubMed  CAS  Google Scholar 

  • Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci USA 18:222–229

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM (1949) Rollins Adams Emerson (1873–1947). Natl Acad Sci Biogr Mem 25:313– 325

    Google Scholar 

  • Rhoades MM (1984) The early years of maize genetics. Ann Rev Genet 18:1–29

    Article  PubMed  CAS  Google Scholar 

  • Robertson DS (1978) Characterization of a mutator system in maize. Mutat Res 51:21–28

    Google Scholar 

  • Sachs MM (2005) Maize mutants: resources for research. Maydica 50:305–309

    Google Scholar 

  • Scholl R, Sachs M, Ware D (2003) Maintaining collections of mutants for plant functional genomics. Meth Molec Biol 236:311–326

    CAS  Google Scholar 

  • Settles AM, Latshaw S, McCarty D (2004) Molecular analysis of high-copy insertion sites in maize. Nucl Acid Res 32(6):e54

    Article  Google Scholar 

  • Shands HL (1990) Plant genetic resources conservation: the role of the gene bank in delivering useful genetic materials to the research scientist. J Hered 81:7–10

    Google Scholar 

  • Shands HL (1995) The U.S. National Plant Germplasm System. Can J Plant Sci 75:9–15

    Google Scholar 

  • Shands HL, Fitzgerald PJ, Eberhart SA (1989) Program for plant germplasm preservation in the United States. In: Knutson L, Stoner AK (eds) Biotic diversity and germplasm preservation: global imperatives. Kluwer, Dordrecht, pp 97–116

    Google Scholar 

  • Sheridan WF (1982) Maize for biological research. Plant Molecular Biology Association, Charlottesville

    Google Scholar 

  • Springer N, Napoli CM, Selinger D, Pandey R, Cone KC, Chandler V, Kaeppler HF, Kaeppler S (2003) Identification of cis-acting regulatory sequences and trans-acting regulatory factors are the stepping stones to the elucidation of the mechanism of p1 paramutation. Plant Physiol 132:907–925

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Moll RH, Goodman MM, Schaffer HE, Weir BS (1980) Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.). Genetics 95: 225–236

    PubMed  CAS  Google Scholar 

  • Taba S (1990) Conservation and use of maize genetic resources at CIMMYT. Maydica 35:183–186

    Google Scholar 

  • Taba S, Eberhart SA, Pollak LM (2004) Germplasm resources. In: Smith CW, Betrán J, Runge ECA (eds) Corn: origin, history, technology and production. Wiley, Hoboken

    Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:28

    Article  Google Scholar 

  • Timothy DH, Goodman MM (1979) Germplasm preservation: the basis of future feast or famine — genetic resources of maize — an example. In: Rubenstein I, Phillips RL, Green CE, Gengenbach BG (eds) The plant seed: development, preservation, and germination. Academic, New York, pp 171–200

    Google Scholar 

  • Troyer AF (1990) A retrospective view of corn genetic resources. J Hered 81:17–24

    Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger C, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley JF (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  • Warburton M, Xia XC, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Google Scholar 

  • White GA, Shands HL, Lovell GR (1989) History and operation of the National Plant Germplasm System. Plant Breed Rev 7:5–56

    Google Scholar 

  • Wilson RL, Clark RL, Widrlechner MP (1985) A brief history of the North Central Regional Plant Introduction Station and a list of the genera maintained. Proc Iowa Acad Sci 92:63–66

    Google Scholar 

  • Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, Beck D, Pixley K, Warburton ML (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Subtropical, tropical midlatitude, and highland maize inbred lines and their relationships with elite US and European maize. Crop Sci 45:2573–2582

    Article  CAS  Google Scholar 

  • Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Peterson T (2004) Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167:1929–1937

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin M. Sachs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Sachs, M.M. (2009). Maize Genetic Resources. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_14

Download citation

Publish with us

Policies and ethics