Skip to main content

Energy-Preserving and Stable Approximations for the Two-Dimensional Shallow Water Equations

  • Conference paper

Part of the book series: Abel Symposia ((ABEL,volume 3))

Summary

We present a systematic development of energy-stable approximations of the two-dimensional shallow water (SW) equations, which are based on the general framework of entropy conservative schemes introduced in [Tad03, TZ06]. No artificial numerical viscosity is involved: stability is dictated solely by eddy viscosity. In particular, in the absence of any dissipative mechanism, the resulting numerical schemes precisely preserve the total energy, which serves as an entropy function for the SW equations. We demonstrate the dispersive nature of such entropy conservative schemes with a series of scalar examples, interesting for their own sake. We then turn to the SW equations. Numerical experiments of the partial-dam-break problem with energy-preserving and energy stable schemes, successfully simulate the propagation of circular shock and the vortices formed on the both sides of the breach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akio Arakawa and Vivian R. Lamb. Computational design of the basic dynamical process of the ucla general circulation model. Meth. Comput. Phys., 17:173–265, 1977.

    MathSciNet  Google Scholar 

  2. Akio Arakawa and Vivian R. Lamb. A potential enstrophy and energy conserving scheme for the shallow water equations. Mont. Weat. Rev., 109:18–36, 1981.

    Article  Google Scholar 

  3. Akio Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. I [J. Comput. Phys. 1 (1966), no. 1, 119–143]. J. Comput. Phys., 135(2):101–114, 1997. With an introduction by Douglas K. Lilly, Commemoration of the 30th anniversary {of J. Comput. Phys.}.

    Article  MathSciNet  Google Scholar 

  4. Alina Chertock and Alexander Kurganov. On a hybrid finite-volume-particle method. M2AN Math. Model. Numer. Anal., 38(6):1071–1091, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantine M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2000.

    Google Scholar 

  6. Bjorn Engquist and Stanley Osher. Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp., 34(149):45–75, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  7. Robert J. Fennema and M. Hanif Chaudhry. Explicit methods for 2d transient free-surface flows. J. Hydraul. Eng. ASGE, 116(8):1013–1034, 1990.

    Article  Google Scholar 

  8. Jonathan Goodman and Peter D. Lax. On dispersive difference schemes. I. Comm. Pure Appl. Math., 41(5):591–613, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  9. Paul Glaister. Difference schemes for the shallow water equations. Numerical Analysis Report 9/87, University of Reading, Department of Mathematics, 1987.

    Google Scholar 

  10. Sergei K. Godunov. An interesting class of quasi-linear systems. Dokl. Akad. Nauk SSSR, 139:521–523, 1961.

    MathSciNet  Google Scholar 

  11. Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stabilitypreserving high-order time discretization methods. SIAM Rev., 43(1):89–112 (electronic), 2001.

    Article  MATH  MathSciNet  Google Scholar 

  12. Thomas Y. Hou and Peter D. Lax. Dispersive approximations in fluid dynamics. Comm. Pure Appl. Math., 44(1):1–40, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  13. Stanislav N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.

    MathSciNet  Google Scholar 

  14. Alexander Kurganov and Eitan Tadmor. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys., 160(1):241–282, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. Peter D. Lax. Shock waves and entropy. Acaemic Press, New York, 1971. Contributions to Nonlinear Functional Analysis, (E.A.Zarantonello, ed.).

    Google Scholar 

  16. Peter D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11.

    MATH  Google Scholar 

  17. C. David Levermore and Jian-Guo Liu. Large oscillations arising in a dispersive numerical scheme. Phys. D, 99(2–3):191–216, 1996. 94

    Article  MATH  MathSciNet  Google Scholar 

  18. Philippe G. Lefloch, J. M. Mercier, and C. Rohde. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal., 40(5):1968–1992 (electronic), 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. Michael S. Mock. Systems of conservation laws of mixed type. J. Differential Equations, 37(1):70–88, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  20. Phil L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Corn-put. Phys., 43(2):357–372, 1981.

    MATH  MathSciNet  Google Scholar 

  21. Denis Serre. Systems of Conservation Laws, 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, 1999.

    Google Scholar 

  22. Eitan Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp., 49(179):91–103, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  23. Eitan Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer., 12:451–512, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  24. Eitan Tadmor and Weigang Zhong. Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity. J. Hyperbolic Differ. Equ., 3(3):529–559, 2006.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eitan Tadmor or Weigang Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tadmor, E., Zhong, W. (2008). Energy-Preserving and Stable Approximations for the Two-Dimensional Shallow Water Equations. In: Munthe-Kaas, H., Owren, B. (eds) Mathematics and Computation, a Contemporary View. Abel Symposia, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68850-1_4

Download citation

Publish with us

Policies and ethics