
A Comparison of Task Pool Variants in
OpenMP and a Proposal for a Solution to the

Busy Waiting Problem

Alexander Wirz, Michael Süß, and Claudia Leopold

University of Kassel, Research Group Programming Languages / Methodologies,
Wilhelmshöher Allee 73, D-34121 Kassel, Germany

wirz@student.uni-kassel.de, {msuess, leopold}@uni-kassel.de

Abstract. Irregular algorithms are difficult to parallelize using existing
OpenMP constructs. This paper concentrates on algorithms that deploy
task pools, i.e., data structures for dynamic load balancing. We present
several task pool variants that we have implemented in OpenMP, and
compare their performance. Due to the lack of a mechanism in OpenMP
to put a thread to sleep, we had to use busy waiting in our implementa-
tions. To eliminate this need, we suggest an extension to OpenMP that
allows to put a thread to sleep on demand.

1 Introduction

OpenMP [1] provides powerful constructs to parallelize regular programs, i.e.,
programs that execute a similar set of operations on different elements of a
regular data structure such as an array. Irregular applications, in contrast, are
difficult to parallelize using the existing OpenMP constructs. For irregular ap-
plications, the units of work can usually not be distributed statically among a
fixed number of threads, because they are created dynamically at runtime and
their number depends on the given input. Moreover, it is often not possible to
predict the amount of work to be done in a unit for any particular input data.

One approach to achieve dynamic load balancing is the use of task pools.
A task pool is a data structure that stores dynamically created work units
(tasks) to support distribution to a certain number of threads. Section 2 gives an
overview about some task pool variants that we have implemented in OpenMP,
and presents the results of our runtime experiments with three irregular ap-
plications using task pools: Quicksort, Labyrinth-Search and Sparse Cholesky
Factorization. Performance numbers gathered with the workqueuing model pro-
posed by Shah et al. [2] are included for comparison in this section as well.

One problem we have been confronted with during the implementation of our
task pools is the lack of a suitable mechanism in OpenMP to put a thread to
sleep while waiting for a condition to become true. The programmer therefore
has to resort to busy waiting, which may be wasteful on the available computing
resources. Fig. 1 sketches a solution to this problem by proposing an extension
to OpenMP, which is spelled out in Sect. 3. Sect. 4 surveys related work, and
Sect. 5 summarizes our results.

M.S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 397–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

398 A. Wirz, M. Süß, and C. Leopold

– # pragma omp yield:
release the processor so that another thread can run on it

– #pragma omp sleepuntil (scalar expression):
sleep until scalar expression becomes true

Fig. 1. Scheduling in a nutshell

2 Task Pools

Task pools are used to achieve dynamic load balancing in irregular applications.
A task pool stores tasks that are created dynamically at runtime. It also provides
a set of operations that allow threads to insert and extract tasks concurrently in a
threadsafe manner. The remainder of this section is organized as follows: Sect. 2.1
introduces the high level interface for the programmer used by all our task pool
variants. In Sect. 2.2, the different task pool variants are described, while Sect. 2.3
highlights the most severe implementation problem we had with all variants: lack
of a suitable mechanism to put threads to sleep while waiting for a condition to
become true. Finally, in Sect. 2.4, we introduce three example applications that
are used in Sect. 2.5 to assess the performance of the different task pool variants:
Quicksort, Labyrinth-Search and Sparse Cholesky Factorization.

2.1 Application Programming Interface

All implemented task pools use the same application programming interface.
This API provides functions to initialize and destroy the task pool structure, as
well as to insert and extract tasks concurrently. Listing 1.1 shows an example of
the relevant part of an OpenMP program that uses our API.

1 t a s k d a t a t ∗ task data ;
2 t po o l t ∗pool = t p o o l i n i t (num threads , s izeof (t a s k d a t a t)) ;
3 task data = g e n e r a t e i n i t i a l t a s k () ;
4 tpoo l pu t (pool , 0 , task data) ;
5 #pragma omp paral lel shared (pool)
6 {
7 t a s k d a t a t ∗my task data ;
8 int me = omp get thread num () ;
9 while (TPOOL EMPTY != tp oo l g e t (pool , me, &my task data) ;

10 do work (my task data) ;
11 }
12 tpoo l d e s t r oy (pool) ;

Listing 1.1. OpenMP program using task pools

First, a task pool must be initialized by using the tpool init() function. This
function must only be called once, and only by a single thread. Afterwards, the
task pool can be used to store (tpool put()) and extract (tpool get()) tasks. The
latter function blocks until it either successfully extracts a task from the pool,
or discovers that the task pool is empty and all threads using the pool are idle.

A Comparison of Task Pool Variants in OpenMP 399

Finally, function tpool destroy() frees the memory used by the task pool. All task
pool variants and test applications were implemented in C.

2.2 Variants of Task Pools

We implemented several variants of task pools. Some of them (sq1, sdq1 and dq8)
were ported to OpenMP from existing POSIX threads and Java implementations
described by Korch and Rauber [3]. Others (dq9 and dq9-1) have been developed
by the authors as enhancements of the dq8 variant. The remainder of this section
explains the variants.

Central Task Queue: The simplest way to design a task pool, called sq1, is
to use a single shared task queue. Each thread is allowed to access this queue
with functions tpool put() and tpool get(). We used OpenMP lock variables to
ensure that only one thread can access the task queue at a time. The variant
has the drawback that when two or more threads are trying to access the task
pool simultaneously, they have to wait for each other. Therefore, the task pool
can become a bottleneck for applications that use a large number of threads or
access the pool frequently. Nevertheless, this variant offers good load balancing
capabilities and performs well for applications that create only few tasks or
access the task pool rarely.

Combined Central and Distributed Task Queues: To reduce waiting
times caused by access conflicts, the task pool variant sdq1 uses distributed
task queues. It manages a private task queue for each thread and permits only
the owner thread to access the queue. Therefore no synchronization operations
are needed for the private queues. An extra central queue is maintained for load
balancing. Whenever a private queue is empty, the owner thread tries to fetch a
task from the central queue. To ensure the exchange of tasks among the threads,
the size of the private queues is limited. If a thread tries to enqueue a new task
and discovers that its private queue is full, it will move the new task to the
central queue.

Distributed Queues with Dynamic Task Stealing: In contrast to sdq1,
the task pool variants dq8, dq9 and dq9-1 use multiple shared queues to reduce
the possibility of access conflicts: each thread has its own private and its own
shared queue. If a thread runs out of tasks in its private queue, it will take a
task from its shared queue. If the shared queue is also empty, the thread will try
to steal a task from the shared queue of another thread, and then return it from
tpool get().

Although the task pool variants dq8, dq9 and dq9-1 are conceptually similar,
they use different strategies for filling the shared queues. Like sdq1, dq8 uses
private queues with a limited size. If a private task queue is full, the new tasks
are moved to the shared queue.

400 A. Wirz, M. Süß, and C. Leopold

Unlike dq8, variants dq9 and dq9-1 adjust the size of the private queues dy-
namically, based on the state of the shared queue. The size of a private queue in
dq9 and dq9-1 is not limited to a certain value. The private queues of these task
pool variants can contain an arbitrary number of tasks. The reason is that dq9
and dq9-1 try to keep most tasks in the private queues to reduce the number
of operations on shared queues. A thread will move a task into its shared queue
in tpool put() only if the shared queue is running empty. If both the private and
the shared queue are empty, a new task will be inserted into the shared queue
in dq9, but into the private queue in dq9-1.

Another difference between dq9-1 and dq9 is the point in time, when task
stealing is started. While dq8 and dq9 do not attempt to steal tasks before a
private queue is empty, dq9-1 initiates task stealing as soon as the number of
tasks in the private queue drops below a predefined threshold value. This is done
to prevent the private queue from running empty.

All of these different variants are summarized in Tab. 1.

Table 1. Comparison of implemented task pool variants (Q. stands for Queue, the
number in braces stands for the actual number of tasks used in our tests)

Name Num. Q. Num. Shared Q. Size of Priv. Q. Task-stealing Time
sq1 1 1 - -
sdq1 num threads + 1 1 limited (2) -
dq8 num threads ∗ 2 num threads limited (2) priv. queue empty
dq9 num threads ∗ 2 num threads unlimited priv. queue empty

dq9-1 num threads ∗ 2 num threads unlimited priv. queue low (2)

2.3 Implementation Problem: Busy Waiting

The implementation of the task pools sketched in the previous section was rel-
atively straightforward with OpenMP, but we encountered a problem for which
OpenMP does not provide an adequate solution: Each time a thread tries to
extract a task but detects an empty task pool, it has to wait until another
thread inserts a new task. Korch and Rauber [3] solved the problem for their
implementations with condition variables in POSIX threads, and the wait()-
notify() mechanism in Java, respectively. Unfortunately, there is no mechanism
in OpenMP to put a thread to sleep until an event occurs or a condition becomes
true. In our task pool implementations, we therefore had to fall back on busy
waiting, which results in unnecessary idle cycles. For this reason, Sect. 3 suggests
OpenMP extensions to solve the problem. These simple extensions can be used
to avoid busy waiting in a task pool, and are also helpful in other contexts.

2.4 Benchmarks

To compare the performance of our task pool variants, we have implemented
three irregular applications: Quicksort, Labyrinth-Search and Sparse Cholesky

A Comparison of Task Pool Variants in OpenMP 401

Factorization. Quicksort is a popular sorting algorithm, initially invented and
described by Hoare [4]. The Labyrinth-Search application finds the shortest path
through a labyrinth using the breadth-first search algorithm. To ensure that all
labyrinth cells with the same distance from the entry cell are visited before any
other cells are processed, we use two task pools. The tasks in the first pool
correspond to cells with distance d from the entry cell. The second task pool is
used to collect tasks (cells) with distance d + 1.

Cholesky Factorization is an algorithm to solve systems of linear equations
Ax = b. It exploits the fact that a symmetric positive definite matrix A can
be decomposed into A = LLT , where L is a lower triangular matrix with pos-
itive diagonal elements. Using this decomposition, the original equation can be
solved more efficiently. Information on Cholesky Factorization can be found, for
instance, in the book by George and Liu [5]. To test our task pool variants, we
have implemented only the most expensive part of Cholesky Factorization: nu-
merical factorization. Numerical factorization computes the nonzero elements of
the result matrix L. We have implemented a so-called right-looking factorization
scheme. Each task computes one column of the result matrix, dividing all ele-
ments of this column by the square root of its diagonal. Then, all columns which
depend on the recently computed column are updated by adding a multiple of
the computed column to them.

2.5 Results

Performance measurements were carried out on an AMD Opteron 848 class com-
puter with four processors at 2.2 GHz, and on a Sun Fire E6900 with 24 dual-core
Ultra Sparc IV processors at 1.2 GHz. On the AMD system, a maximum of four
threads was used, while on the Sun system, a maximum of eight threads was
used. Although more threads would have been possible on the latter machine,
eight processors is the maximum number that this machine supports without en-
countering NUMA-effects (as it consists of multiple mainboards with 4 dual-core
processors each). On the AMD system, the benchmarks were compiled with the
Intel C++ Compiler 9.0 using options -O2 and -openmp. On the Sun Fire E6900,
the Guide compiler with options -fast --backend -xchip=ultra3cu --backend
-xcache=64/32/4:8192/512/2 --backend -xarch=v8plusb was used. We have
not used the native SUN compiler, because it does not support the workqueuing
extension (see next paragraph).

For comparison, we implemented Quicksort and the Cholesky factorization
using Intel’s proposed workqueuing model. It was first introduced by Shah et al.
[2], as an integrated approach to achieve dynamic load balancing for irregular
applications. Those authors suggest an OpenMP extension which allows to split
the work into units (tasks) that are distributed dynamically to the threads of a
program using a task queue. Since both the Intel C++ and the Guide compilers
already support the workqueueing model, we implemented two benchmarks using
this proposed OpenMP extension on the same set of machines. Unfortunately, we
could not implement the Labyrinth-Search algorithm with this model, because
we did not find a way to use two different queues and ensure that all tasks from

402 A. Wirz, M. Süß, and C. Leopold

Fig. 2. Wall–clock times for Quicksort in seconds. Each time shown is the average of
three runs.

Fig. 3. Wall–clock times for the Cholesky factorization. Each time shown is the average
of three runs.

one queue are executed before the program starts to execute tasks from the
second queue.

Fig. 2 shows the wall-clock times in seconds for the Quicksort benchmark
application with different task pool variants and the Intel taskq implementation.
We used an array with 100.000.000 elements as input data on the AMD Opteron
system and an array with 10.000.000 elements on the Sun Fire E6900. The
results for the Cholesky factorization are shown in Fig. 3. For the Cholesky
factorization, a 500x500 matrix was used as input. Fig. 4 shows the results for
the Labyrinth-Search benchmark application with different task pool variants.

Our experiments indicate that the performance of different task pool variants
depends on the type of application. Quicksort and Labyrinth-Search, which cre-
ate a large number of tasks, achieve better performance using task pools with
distributed task queues. Cholesky factorization, in contrast, generates only a few
tasks, and therefore good load balancing is crucial. The use of private queues
turns out to be a drawback in this case, because all tasks remain in the private
queues and the idle threads have no chance to fetch them. The performance of
dq9 is good, though, because this variant makes the distribution of tasks among

A Comparison of Task Pool Variants in OpenMP 403

Fig. 4. Wall–clock times for Labyrinth-Search. Each time shown is the average of three
runs.

the queues dependent on the number of tasks in the pool. If there are only a
few tasks in the pool (shared queues are empty and at least one thread is idle),
a new task will be inserted into a shared queue (and not, like e. g. for dq9-1
into a private queue). If there are enough tasks in the pool, however, dq9 will
insert a new task into a private queue to avoid synchronization operations. Using
this technique, dq9 achieves much better performance than the other task pool
variants with distributed queues.

Fig. 3 shows that the only task pool variant that uses one central queue
(sq1) achieves the best performance for Cholesky Factorization. The reason is
the good load balancing offered by sq1 : all tasks are kept in one central queue,
where all threads can access them. Due to the small number of tasks generated
by the algorithm, a central queue does not slow down the program because the
application accesses the task pool only rarely.

The bottom line from our experiments is that there is no clear winning
taskpool implementation. It depends on the application, which task pool variant
is suited best.

As can be seen, the performance of the task pools implemented inside the
two compilers using Intels taskq is comparable to (and in some cases even better
than) our implementations for the Cholesky example. When many tasks are
generated and stored in the pools (as is the case for Quicksort), our optimized
task pools are able to outperform the Intel implementations, though.

3 Solving the Problem of Busy Waiting

As has already been stated in Sect. 2.3, there is a problem regarding busy waiting
and OpenMP. The problem is shortly rehashed on a broader scale in Sect. 3.1. Af-
terwards, Sect. 3.2 specifies our proposed solution, and Sect. 3.3 gives our reasons
for the design. Finally, in Sect. 3.4, the specification is applied to our examples, and
some ways to use the new functionality are shown. A reference implementation of
the suggested changes to the OpenMP functionality can be found in a special re-
lease of the OMPi Compiler [6] that is available from the authors on request.

404 A. Wirz, M. Süß, and C. Leopold

3.1 Problem Description

The problem of busy waiting has already been discussed by the same authors [7].
It manifests if a thread has to wait for a condition to become true before it can
continue. In the case of our task pools, for instance, function tpool get() is sup-
posed to return an element from the pool, but if there is no element left, it has
to wait for work to become available. The most sparing way for the computing
resources to implement this waiting is to put the thread to sleep until the condi-
tion becomes true. Unfortunately, there is no functionality available in OpenMP
to support the waiting, though.

As a valid workaround, the programmer may poll a condition repeatedly,
thereby wasting processor time. This approach is known as busy waiting. To give
another example, busy waiting is also required for pipelined algorithms, where
a stage has to wait until a previous stage has completed its work. Busy waiting
is best avoided, especially when other threads are waiting for the processor to
become available, or when power consumption is an issue, e.g. in embedded
systems.

Novice OpenMP programmers may resort to using locks to solve the problem.
In their approach, the waiting thread tries to set an already set lock, and is put
on hold as a result. As soon as work is available, a different thread will unset the
lock, thereby enabling the waiting thread to continue. Although this approach
often works, it is not compliant with the OpenMP specification, because the lock
is unset by a different thread than the owner thread, which leads to unspecified
behaviour. Furthermore, there is no guarantee that a thread waiting on a lock
is put to sleep at all (busy waiting is also allowed), and therefore this approach
is even more flawed.

The problem described above cannot be solved in OpenMP satisfactory as of
now, since there are no directives for scheduling available. Therefore, Sect. 3.2
suggests a possible addition to the OpenMP specification that makes the sug-
gested workarounds (busy waiting or non-compliant use of locks) obsolete. The
problem has already been noticed by Lu et al. [8], who suggested the introduction
of condition variables (as found in POSIX threads) in 1998. Our solution tries
to combine the power of condition variables with the ease of use of OpenMP.

Let us make one more fact perfectly clear: The newly proposed functionality is
not useful for the common case in computing centers today, where one processor
is exclusivly available for each thread. It is intended for the more general case
that multiple threads are competing for the available processors. With the advent
of multi-core CPUs in common desktop systems and the expected shift to multi-
threaded applications, we soon expect this case to be the dominant one.

3.2 Specification

We suggest two new directives:

#pragma omp yield
Similar to the POSIX function sched yield (), this function tells the scheduler to
pick a new thread to run on the current processor. If no new thread is available,

A Comparison of Task Pool Variants in OpenMP 405

it returns immediately. The directive provides a simple way to pass on knowledge
on what is important and what not from the programmer to the runtime system
and operating system scheduler. As a second new directive, we propose:

#pragma omp sleepuntil (scalar expression)
This directive puts the current thread to sleep until the specified scalar ex-
pression becomes true (non-zero). The expression is occasionally tested by the
runtime system in the background. Before each test, a flush is carried out auto-
matically, to keep the temporary view of memory consistent with memory. An
implementation of the directive is not required to wake up the sleeping thread
immediately after the expression becomes true, nor does it have to wake it up
if the expression becomes true and becomes false again shortly afterwards. Not
all threads waiting on the same expression have to wake up at the same time
either. It is unspecified, how many times any side-effects in the evaluation of the
scalar expression occur.

3.3 Rationale

The yield directive is inspired by its POSIX counterpart, sched yield(). It offers
an easy to use way to influence the scheduling policies of the operating system.
This can be important when computing resources are sparse and the programmer
wants to optimize program throughput. An example of this would be calling the
yield directive at the end of every pipeline step in a pipelined application, to get
values through the pipeline as fast as possible.

We know of no scheduling primitive in any other parallel programming sys-
tem that is as powerful and easy to use as the proposed sleepuntil. Thanks to
the OpenMP memory model (and its ability to read variables without locking
them using only flush, as compared to e. g. POSIX Threads), this directive is as
powerful as condition variables, yet it lacks their difficult usage. The directive
can be emulated by wasting time in a loop, but this would be busy waiting and
wasteful to the available computing resources, as outlined in Sect. 3.1.

The proposed changes are fully backwards compatible to the existing OpenMP
specification, since no behaviour of existing OpenMP functionality is altered in
any way.

3.4 Application

We have emphasized in Sect. 3.1 that there is no opportunity for a parallel al-
gorithm using taskpools to wait for a new element out of an otherwise empty
pool, without constantly polling the pool. There are two approaches to solve this
problem with our newly proposed directives. The first one calls the yield direc-
tive whenever there is no work in the pool, which will put the thread to sleep
if another thread is waiting for a processor to become available. Chances are,
that a different thread will produce work for the taskpool. If there is no other
thread from the same application, a context switch may occur and a different

406 A. Wirz, M. Süß, and C. Leopold

application will run on the processor, allowing for a higher throughput on the
machine. Finally, if there is no other thread waiting for the processor, the call
to the yield directive will just return and no harm is done. A second possible
solution is the following:

1 #pragma omp s l e e p u n t i l (! tpoo l i s empty (pool))

This solution offers a more fine-grained control over when the thread is sup-
posed to wake up again, as the thread will sleep until something has been put
into the taskpool and not just an unspecified amount of time as with the yield
solution. After wake-up, it is still necessary to check if the taskpool is not empty
again, as no locking of any sort is involved here. The thread might have been
woken up at a time when the pool was not empty, but when it tries to actually
get a task from the pool, a different thread might have already popped the task.

It is difficult to measure the impact of the proposed directives, as they are
most useful on fully loaded systems. We have therefore overloaded a system
by starting our benchmark applications with 32 threads using the most simple
taskpool sq1. The results are shown in Fig. 5.

Fig. 5. The impact of the proposed directives on a fully loaded system (Sun Fire E6900
with 32 Threads running on 8 processors), measured wall-clock times in seconds over
multiple runs with sq1

A different use case for both new directives is testing. When testing OpenMP
compilers or performing tests for OpenMP programs, it is often useful to force the
scheduler into certain timing behaviours that could not be tested otherwise (e. g.
stalling one thread, while all other members of the team go ahead and run into a
barrier). This is not possible with the present OpenMP specification (except with
busy waiting again), and can be very useful to test for hard to catch errors. An
example to stall execution of one thread for 100 milliseconds is shown below:

1 double now = omp get wtime () ; /∗ save current time into now ∗/
2 #pragma omp s l e e p u n t i l (omp get wtime () >= now + 0 . 1)

A Comparison of Task Pool Variants in OpenMP 407

4 Related Work

This paper is an indirect follow-up paper to our own work on task-pools [7]. Some
less advanced task pool variants were presented there, along with a first mention
of the problem of busy waiting. The present paper includes more advanced task
pool variants, two new example algorithms, and a proposal to solve the problem
of busy waiting.

A detailed analysis of several task pool implementations with pthreads and
Java threads can be found in the article of Korch and Rauber [3]. They conclude,
that a combination of private and a public queues for each thread works best for
their three benchmark applications.

An OpenMP extension that could help to deal with irregular problems, the
workqueuing model, has been suggested by Shah et al. [2], and performance
measurements for this extension have already been discussed in Sect. 2.5.

Another approach was proposed by Balart et al. [9]. They suggest to relax
the specifications of the sections directive allowing a section to be instantiated
multiple times. Additionaly they suggest to execute code outside of any section
by a single thread. Each time this thread detects a section instance, it will insert
this section into an internal queue. The section instances inserted into the queue
are executed by a team of threads.

5 Concluding Remarks and Perspectives

Efficient parallelization of irregular algorithms is an ambitious goal that often
can be tackled with task pools. We have presented several variants of task pools
along with their implementation in OpenMP. To assess the performance of the
variants, we have implemented three irregular algorithms: Quicksort, Labyrinth-
Search and Cholesky Factorization. Results show that the correct selection of a
task pool variant has a significant impact on the performance of an application.
There is no universally best variant, but the suitability depends on the pattern
of accesses to the task pool. Applications that generate many tasks and access
the task pool frequently benefit from the usage of distributed private queues.
Applications that access the task pool infrequently, in contrast, need good load
balancing, and therefore gain more profit from a central shared task queue.

The second contribution of this paper has been a proposal to the OpenMP
language committee. We suggested two directives: yield and sleepuntil. Both
enable the programmer to influence the scheduling process, and to put threads
to sleep on demand. By using these directives, the need for busy waiting is
eliminated.

A reference implementation of the extended OpenMP functionality can be
found in a special release of the OMPi Compiler [6] that is available from the
authors on request. In the future, we plan to explore more applications with
OpenMP, trying to find ways to improve the specification in the process. Our
progress will be visible in the UKOMP project [10]. The project will serve as our
testing ground for new functionality we discover to be useful, and also enables
other developers to give feedback on how they like our changes.

408 A. Wirz, M. Süß, and C. Leopold

Acknowledgments

We are grateful to Björn Knafla for proofreading the paper and for his insightful
comments. We thank the University Computing Centers at RWTH Aachen, TU
Darmstadt and University of Kassel for providing the computing facilities used
to test our sample applications on different compilers and hardware.

References

1. OpenMP Architecture Review Board: OpenMP specifications (2005), http://www.
openmp.org/specs

2. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for paral-
lelism in OpenMP. In: Proceedings of the First European Workshop on OpenMP
- EWOMP (1999)

3. Korch, M., Rauber, T.: A comparison of task pools for dynamic load balancing of ir-
regular algorithms. Concurrency and Computation: Practice and Experience 16(1),
1–47 (2004)

4. Hoare, C.: Quicksort. The Computer Journal 5, 10–15 (1962)
5. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive-Definite Sys-

tems. Prentice-Hall, Englewood Cliffs (1981)
6. Dimakopoulos, V.V., Georgopoulos, A., Leontiadis, E., Tzoumas, G.: OMPi com-

piler homepage (2003), http://www.cs.uoi.gr/∼ompi/
7. Süß, M., Leopold, C.: A user’s experience with parallel sorting and OpenMP. In:

Proceedings of the Sixth European Workshop on OpenMP - EWOMP 2004 (2004)
8. Lu, H., Hu, C., Zwaenepoel, W.: OpenMP on networks of workstations. In: Proc.

of Supercomputing 1998 (1998)
9. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos

mercurium: a research compiler for OpenMP. In: Proceedings of the European
Workshop on OpenMP (2004)

10. Süß, M.: University of Kassel OpenMP – UKOMP homepage (2005), http://www.
plm.eecs.uni-kassel.de/plm/index.php?id=ukomp

http://www.
openmp.org/specs
http://www.cs.uoi.gr/~ompi/
http://www.
plm.eecs.uni-kassel.de/plm/index.php?id=ukomp

	A Comparison of Task Pool Variants in OpenMP and a Proposal for a Solution to the Busy Waiting Problem
	Introduction
	Task Pools
	Application Programming Interface
	Variants of Task Pools
	Implementation Problem: Busy Waiting
	Benchmarks
	Results

	Solving the Problem of Busy Waiting
	Problem Description
	Specification
	Rationale
	Application

	Related Work
	Concluding Remarks and Perspectives

