Skip to main content

Brain Plasticity and fMRI

  • Chapter
Book cover Clinical Functional MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Plasticity is the collective term used for a number of mechanisms that lead to molecular and/or structural alterations of an organism. These changes occur throughout life during learning processes, novel experiences as well as in response to injury. This chapter consists of a review of functional magnetic resonance imaging findings on plasticity phenomena occurring in response to brain injury, epilepsy, and congenital lesions. First, in a brief introduction to the phenomenon ‘plasticity’, a number of factors influencing plasticity phenomena and recovery from brain injury are discussed. Next, we discuss the occurrence of plasticity phenomena in a number of diseases. In the section on plasticity phenomena in patients with brain Tumors, both preoperative and postoperative plastic changes are considered, with a focus on the motor system. The section on plasticity phenomena in patients with epilepsy is mainly focused on the lateralization (or dominance) of language in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18:423–438

    Article  PubMed  CAS  Google Scholar 

  • Alkadhi H, Kollias SS, Crelier GR, Golay X, Hepp-Reymond MC, Valavanis A (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. Am J Neuroradiol 21:1423–1433

    PubMed  CAS  Google Scholar 

  • Anderson VA, Catroppa C, Rosenfeld J, Haritou F, Morse SA (2000) Recovery of memory function following traumatic brain injury in pre-school children. Brain Injury 14:679–692

    Article  PubMed  CAS  Google Scholar 

  • Baciu M, Le Bas JF, Segebarth C, Benabid AL (2003) Presurgical fMRI evaluation of cerebral reorganization and motor deficit in patients with tumors and vascular malformations. Eur J Radiol 46:139–146

    Article  PubMed  CAS  Google Scholar 

  • Berl MM, Balsamo LM, Xu B, Moore EN, Weinstein SL, Conry JA, Pearl PL, Sachs BC, Grandin CB, Frattali C, Ritter FJ, Sato S, Theodore WH, Gaillard WD (2005) Seizure focus affects regional language networks assessed by fMRI. Neurology 65:1604–1611

    Article  PubMed  CAS  Google Scholar 

  • Bilecen D, Seifritz E, Radu EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54:765–767

    PubMed  CAS  Google Scholar 

  • Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984

    PubMed  CAS  Google Scholar 

  • Brazdil M, Zakopcan J, Kuba R, Fanfrdlova Z, Rektor I (2003) Atypical hemispheric language dominance in left temporal lobe epilepsy as a result of the reorganization of language functions. Epilepsy Behav 4:414–419

    Article  PubMed  Google Scholar 

  • Briellmann RS, Labate A, Harvey AS, Saling MM, Lillywhite L, Abbott DF, Jackson GD (2005) Language lateralisation is no different between patients with temporal lobe developmental tumours and hippocampal sclerosis. Epilepsia 46:334–335

    Article  Google Scholar 

  • Carpentier AC, Constable RT, Schlosser MJ, de Lotbiniere A, Piepmeier JM, Spencer DD, Awad IA (2001) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94:946–954

    PubMed  CAS  Google Scholar 

  • Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  PubMed  CAS  Google Scholar 

  • Cohen LG, Weeks RA, Sadato N, Celnik P, Ishii K, Hallett M (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460

    Article  PubMed  CAS  Google Scholar 

  • Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527

    PubMed  CAS  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    Article  PubMed  CAS  Google Scholar 

  • Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Duffau H (2001) Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry 70:506–513

    Article  PubMed  CAS  Google Scholar 

  • Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4:476–486

    Article  PubMed  Google Scholar 

  • Duffau H, Gatignol P, Mandonnet E, Denvil D, Sichez N, Leroy M, Lopes M, Taillandier L, Bitar A, Sichez JP, Van Effenterre R, Capelle L (2004) Functional recovery after surgical resection of eloquent brain areas invaded by lowgrade gliomas: the use of cerebral plasticity. Neurosurgery 55:468

    Article  Google Scholar 

  • Elbert T, Rockstroh B (2004) Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist 10:129–141

    Article  PubMed  Google Scholar 

  • Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238–250

    Article  PubMed  CAS  Google Scholar 

  • Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier MA (2002) Longitudinal study of motor recovery after stroke — recruitment and focusing of brain activation. Stroke 33:1610–1617

    Article  PubMed  CAS  Google Scholar 

  • Finger S, Wolf C (1988) The Kennard effect before Kennard — the early history of age and brain-lesions. Arch Neurol 45:1136–1142

    PubMed  CAS  Google Scholar 

  • Friston KJ, Price CJ (2001) Generative models, brain function and neuroimaging. Scand J Psychol 42:167–177

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791–808

    Article  PubMed  Google Scholar 

  • Hallett M (1998) The neurophysiology of dystonia. Arch Neurol 55:601–603

    Article  PubMed  CAS  Google Scholar 

  • Helmstaedter C, Fritz NE, Gonzalez Perez PA, Elger CE, Weber B (2006) Shift-back of right into left hemisphere language dominance after control of epileptic seizures: evidence for epilepsy driven functional cerebral organization. Epilepsia Res (in press)

    Google Scholar 

  • Hertz-Pannier L, Chiron C, Vera P, Van de Morteele PF, Kaminska A, Bourgeois M, Hollo A, Ville D, Cieuta C, Dulac O, Brunelle F, LeBihan D (2001) Functional imaging in the work-up of childhood epilepsy. Child Nerv Syst 17:223–228

    Article  CAS  Google Scholar 

  • Hertz-Pannier L, Chiron C, Jambaque I, Renaux-Kieffer V, Van de Moortele PF, Delalande O, Fohlen M, Brunelle F, Le Bihan D (2002) Late plasticity for language in a child’s non-dominant hemisphere — a pre-and post-surgery fMRI study. Brain 125:361–372

    Article  PubMed  Google Scholar 

  • Holmes GL, Gairsa JL, Chevassus-Au-Louis N, Ben-Ari Y (1998) Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 44:845–857

    Article  PubMed  CAS  Google Scholar 

  • Janszky J, Mertens M, Janszky I, Ebner A, Woermann FG (2006) Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia 47:921–927

    Article  PubMed  Google Scholar 

  • Johnston MV (2004) Clinical disorders of brain plasticity. Brain Devel 26:73–80

    Article  Google Scholar 

  • Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    Article  PubMed  CAS  Google Scholar 

  • Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein EB, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123(12):2512–2518

    Article  PubMed  Google Scholar 

  • Kolb B, Cioe J (2000) Recovery from early cortical damage in rats, VIII. Earlier may be worse: behavioural dysfunction and abnormal cerebral morphogenesis following perinatal frontal cortical lesions in the rat. Neuropharmacology 39:756–764

    Article  PubMed  CAS  Google Scholar 

  • Krainik A, Lehericy S, Duffau H, Cornu P, Capelle L, Menu Y, Le Bihan D, Marsault C (2001a) Functional recovery following lesion of the Supplementary Motor Area: a fMRI study. Neuroimage 13:S1206

    Article  Google Scholar 

  • Krainik A, Lehericy S, Duffau H, Cornu P, Nence Y, Marsault CJ (2001b) Functional recovery after lesion of the supplementary motor area: an fMRI study. Radiology 221:132

    Article  Google Scholar 

  • Krainik A, Lehericy S, Duffau H, Vlaicu M, Poupon F, Capelle L, Cornu P, Clemenceau S, Sahel M, Valery CA, Boch AL, Mangin JF, Le Bihan D, Marsault C (2001c) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57:871–878

    PubMed  CAS  Google Scholar 

  • Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF, Le Bihan D, Marsault C, Chiras J, Lehericy S (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62:1323–1332

    PubMed  CAS  Google Scholar 

  • Krakauer JW (2005) Arm function after stroke: from physiology to recovery. Semin Neurol 25:384–395

    Article  PubMed  Google Scholar 

  • Krings T, Reinges MHT, Thiex R, Gilsbach JM, Thron A (2001) Functional and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95:816–824

    PubMed  CAS  Google Scholar 

  • Krings T, Topper R, Willmes K, Reinges MHT, Gilsbach JM, Thron A (2002) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58:381–390

    PubMed  CAS  Google Scholar 

  • Kubova H, Druga R, Lukasiuk K, Suchomelova L, Haugvicova R, Jirmanova I, Pitkanen A (2001) Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 21:3593–3599

    PubMed  CAS  Google Scholar 

  • Lee RG, Vandonkelaar P (1995) Mechanisms underlying functional recovery following stroke. Can J Neurol Sci 22:257–263

    PubMed  CAS  Google Scholar 

  • Liegeois F, Connelly A, Cross JH, Boyd SG, Gadian DG, Vargha-Khadem F, Baldeweg T (2004) Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 127:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, Stafstrom CE, Holmes GL (1999) Consequences of recurrent seizures during early brain development. Neuroscience 92:1443–1454

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nature Rev Neurosci 7:179–193

    Article  CAS  Google Scholar 

  • Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Glutamate Disorders Cognit Motiv 1003:1–11

    CAS  Google Scholar 

  • Manto M, ben Taib NO, Luft AR (2006) Modulation of excitability as an early change leading to structural adaptation in the motor cortex. J Neurosci Res 83:177–180

    Article  PubMed  CAS  Google Scholar 

  • Martino G (2004) How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol 3:372–378

    Article  PubMed  CAS  Google Scholar 

  • Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95:10340–10343

    Article  PubMed  CAS  Google Scholar 

  • Murdoch J, Hall R (1990) Brain protection — physiological and pharmacological considerations. Part 1. The physiology of brain injury. Can J Anaesth-J Can Anesth 37:663–671

    CAS  Google Scholar 

  • Nudo RJ (2003) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehab Med 35:7–10

    Article  Google Scholar 

  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Warburton EA, Moore CJ, Frackowiak RSJ, Friston KJ (2001) Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions. J Cognit Neurosci 13:419–429

    Article  CAS  Google Scholar 

  • Prins ML, Hovda DA (2001) Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury. J Neurotrauma 18:31–46

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Milner B (1977) The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci 299:355–369

    Article  PubMed  CAS  Google Scholar 

  • Rausch R, Walsh GO (1984) Right-hemisphere language dominance in right-handed epileptic patients. Archiv Neurol 41:1077–1080

    CAS  Google Scholar 

  • Reinges MHT, Krings T, Rohde V, Hans FJ, Willmes K, Thron A, Gilsbach JM (2005) Prospective demonstration of short-term motor plasticity following acquired central pareses. Neuroimage 24:1248–1255

    Article  PubMed  Google Scholar 

  • Rijntjes M (2006) Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr Opin Neurol 19:76–83

    Article  PubMed  Google Scholar 

  • Satz P (1979) Test of some models of hemispheric speech organization in the left-handed and right-handed. Science 203:1131–1133

    Article  PubMed  CAS  Google Scholar 

  • Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, Weiller C (2006) Dynamics of language reorganization after stroke. Brain 129:1371–1384

    Article  PubMed  Google Scholar 

  • Schiffbauer H, Ferrari P, Rowley HA, Berger MS, Roberts TPL (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49:1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Slavin S, Laurence S, Stein DG (1988) Another look at vicariation. In: Finger S, LeVere TE, Almli CR, Stein DG (eds) Brain injury and recovery: theoretical and controversial issues. Plenum Press, New York, pp 165–178

    Google Scholar 

  • Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PSF, Brewer CC, Perry HM, Morris GL, Mueller WM (1999) Language dominance in neurologically normal and epilepsy subjects-a functional MRI study. Brain 122:2033–2045

    Article  PubMed  Google Scholar 

  • Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krageloh-Mann I (2002) Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. Neuroimage 16:954–967

    Article  PubMed  Google Scholar 

  • Stein DG, Finger S, Hart T (1983) Brain-damage and recovery — problems and perspectives. Behav Neural Biol 37:185–222

    Article  PubMed  CAS  Google Scholar 

  • Sunaert S (2006) Presurgical planning for tumor resectioning. J Magn Reson Imaging 23:887–905

    Article  PubMed  Google Scholar 

  • Teasell R (2003) Stroke recovery and rehabilitation. Stroke 34:365–366

    Article  PubMed  Google Scholar 

  • Thirumala P, Hier DB, Patel P (2002) Motor recovery after stroke: lessons from functional brain imaging. Neurol Res 24:453–458

    Article  PubMed  Google Scholar 

  • Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, De Cock P, Sunaert S (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128:2562–2577

    Article  PubMed  Google Scholar 

  • Trudeau N, Poulin-Dubois D, Joanette Y (2000) Language development following brain injury in early childhood: a longitudinal case study. Intl J Lang Commun Disorders 35:227–249

    Article  CAS  Google Scholar 

  • Voets NL, Adcock JE, Flitney DE, Behrens TEJ, Hart Y, Stacey R, Carpenter K, Matthews PM (2006) Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain 129:754–766

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Merzenich MM, Sameshima K, Jenkins WM (1995) Remodeling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378:71–75

    Article  PubMed  CAS  Google Scholar 

  • Ward NS, Thompson AJ, Frackowiak RSJ (2002) Spontaneous reorganization of the motor system after stroke: a longitudinal functional magnetic resonance imaging study. Ann Neurol 52:S86–S87

    Article  Google Scholar 

  • Weber B, Wellmer J, Reuber M, Mormann F, Weis S, Urbach H, Ruhlmann J, Elger CE, Fernandez G (2006) Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain 129:346–351

    Article  PubMed  Google Scholar 

  • Weiller C, Rijntjes M (1999) Learning, plasticity, and recovery in the central nervous system. Exp Brain Res 128:134–138

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, May A, Sach M, Buhmann C, Rijntjes M (2006) Role of functional imaging in neurological disorders. J Magn Reson Imaging 23:840–850

    Article  PubMed  Google Scholar 

  • Woermann FG, Jokeit H, Luerding R, Freitag H, Schulz R, Guertler S, Okujava M, Wolf P, Tuxhorn I, Ebner A (2003) Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61:699–701

    PubMed  CAS  Google Scholar 

  • Yuan WH, Szaflarski JP, Schmithorst VJ, Schapiro M, Byars AW, Strawsburg RH, Holland SK (2006) fMRI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia 47:593–600

    Article  PubMed  Google Scholar 

  • Zemke AC, Heagerty PJ, Lee C, Cramer SC (2003) Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 34:E23–E26

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, B., Sage, C., Eyssen, M., Kovacs, S., Peeters, R., Sunaert, S. (2007). Brain Plasticity and fMRI. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49976-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49976-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24469-1

  • Online ISBN: 978-3-540-49976-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics