Skip to main content

68Ga-PET Radiopharmacy: A Generator-Based Alternative to 18F-Radiopharmacy

  • Conference paper
PET Chemistry

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 64))

Abstract

Positron emission tomography (PET) is becoming a dominating method in the field of molecular imaging. Most commonly used radionuclides are accelerator produced 11C and 18F. An alternative method to label biomolecules is the use of metallic positron emitters; among them 68Ga is the most promising as it can be produced from a generator system consisting of an inorganic or organic matrix immobilizing the parent radionuclide 68Ge. Germanium-68 has a long half-life of 271 days which allows the production of long-lived, potentially very cost-effective generator systems. A commercial generator from Obninsk, Russia, is available which uses TiO2 as an inorganic matrix to immobilize 68Ge in the oxidation state IV+. 68Ge(IV) is chemically sufficiently different to allow efficient separation from 68Ga(III). Ga3+ is redox-inert; its coordination chemistry is dominated by its hard acid character. A variety of mono- and bifunctional chelators were developed which allow immobilization of 68Ga3+ and convenient coupling to biomolecules. Especially peptides targeting G-protein coupled receptors overexpressed on human tumour cells have been studied preclinically and in patient studies showing high and specific tumour uptake and specific localization. 68Ga-radiopharmacy may indeed be an alternative to 18F-based radiopharmacy. Freeze-dried, kit-formulated precursors along with the generator may be provided, similar to the 99Mo/99mTc-based radiopharmacy, still the mainstay of nuclear medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CJ, John CS, Li YJ, Hancock RD, McCarthy TJ, Martell AE, Welch MJ (1995) N,N′-ethylene-di-L-cysteine (EC) complexes of Ga(III) and In(III): molecular modeling, thermodynamic stability and in vivo studies. Nucl Med Biol 22:165–173

    Article  PubMed  CAS  Google Scholar 

  • Andre J, Maecke H, Zehnder M, Macko L, Akyel K (1998) 1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium-labelling of biomolecules. Chem Commun 12:1301–1302

    Article  Google Scholar 

  • Aschoff P, Öksüz MÖ, Kemke BG, Zhernosekov K, Jennewein M, Rösch F, Bihl H (2005a) Ga-68-DOTATOC-PET/CT im Vergleich zur In-111-DTPAOC-SPECT/CT in der Diagnostik Somatostatinrezeptor-exprimierender Tumoren. Nuklearmedizin 44:A58(V144)

    Google Scholar 

  • Aschoff P, Kemke BG, Öksüz MÖ, Zhernosekov K, Jennewein M, Rösch F, Bihl H (2005b) PET/CT mit Ga-68 DOTATOC bei neuroendokrinen Tumoren: Notwendigkeit eines zusätzlichen Knochenszintigramms? Nuklearmedizin 44:A59(V146)

    Google Scholar 

  • Arslantas E, Smith-Jones P, Ritter G, Schmidt R (2004) TAME-Hex A—A Novel Bifunctional Chelating Agent for Radioimmunoimaging. Eur J Org Chem 2004:3979–3984

    Article  CAS  Google Scholar 

  • Baum R, Schmücking M, Wortmann R, Müller M, Zhernosekov K, Rösch F (2005) Receptor PET/CT using the Ga-68 labelled somatostatin analog DOTA-1-Nal3-octreotide (DOTA-NOC): clinical experience in 140 patients. Nuklearmedizin 44:A57(V142)

    Google Scholar 

  • Brechbiel MW, McMurry TJ, Gansow O (1993) A direct synthesis of a bifunctional chelating agent for radiolabeling proteins. Tetrahedron Lett 34:3691–3694

    Article  CAS  Google Scholar 

  • Breeman WA, de Jong M, Krenning E (2004) Preclinical aspects of Lu-177 labelled DOTA-peptides. In: COST D18 Working Group Meeting: Lanthanides in Therapy. Athens, Greece

    Google Scholar 

  • Broan CJ, Cox J, Craig AS, Kataky R, Parker D, Harrison A, Randall AM, Ferguson G (1991) Structure and solution stability of indium and gallium complexes of 1,4,7-triaacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. J Chem Soc Perkin Trans 2:87–98

    Google Scholar 

  • Caraco C, Aloj L, Eckelman WC (1998) The gallium-deferoxamine complex: stability with different deferoxamine concentrations and incubation conditions. Appl Radiat Isot 49:1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Chappell LL, Rogers BE, Khazaeli MB, Mayo MS, Buchsbaum DJ, Brechbiel MW (1999) Improved synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N′,N″,N‴-tri s(acetic acid)cyclododecane (PA-DOTA). Bioorg Med Chem 7:2313–2320

    Article  PubMed  CAS  Google Scholar 

  • Clarke E, Martell AE (1991) Stabilities of the Fe(III), Ga(III) and In(III) chelates of N,N′,N″-triazacyclononanetriacetic acid. Inorg Chim Acta 181:273–280

    Article  CAS  Google Scholar 

  • Clarke ET, Martell AE (1992) Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13-, and 14-membered tetraazamacrocycles. Inorg Chim Acta 190:37–46

    Article  Google Scholar 

  • Cox J, Craig A, Helps J, Jankowski K, Parker D, Eaton M, Millican A, Millar K, Beeley N, Boyce B (1990) Synthesis of C-and N-functionalised derivatives of 1,4,7-triazacyclononane-1,4,7-triyltriacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayltetraacetic acid (DOTA), and diethylenetriaminepentaacetic acid (DTPA): bifunctional complexing agents for the derivatisation of antibodies. J Chem Soc, Perkin Trans. 19:2567–2576

    Article  Google Scholar 

  • Craig AS, Parker D, Adams H, Bailey N (1989) Stability, Ga-71 NMR and crystal-structure of a neutral gallium(III) chelate of 1,4,7-triazacyclononanetriacetate — apotential radiopharmaceutical. J Chem Soc, Chem Commun:1793–1794

    Google Scholar 

  • Decristoforo C, von Guggenberg E, Haubner R, Rupprich M, Schwarz, Virgolini I (2005) Radiolabelling of DOTA-derivatised peptides with 68Ga via a direct approach — optimization and routine clinical application. Nuklearmedizin 44:A191

    Google Scholar 

  • Deshmukh MV, Voll G, Kuhlewein A, Maecke H, Schmitt J, Kessler H, Gemmecker G (2005) NMR studies reveal structural differences between the gallium and yttrium complexes of DOTA-D-Phe1-Tyr3-octreotide. J Med Chem 48:1506–1514

    Article  PubMed  CAS  Google Scholar 

  • Eisenwiener KP, Powell P, Maecke HR (2000) A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 10:2133–2135

    Article  PubMed  CAS  Google Scholar 

  • Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, Reubi JC, Maecke HR (2002) NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 13:530–541

    Article  PubMed  CAS  Google Scholar 

  • Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, Eberle AN (2004) A gallium-labeled DOTA-alpha-melanocytestimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 45:116–123

    PubMed  CAS  Google Scholar 

  • Furukawa T, Fujibayashi Y, Fukunaga M, Saga T, Endo K, Yokoyama A (1991) An approach for immunoradiometric assay with metallic radionuclides: gallium-67-deferoxamine-dialdehyde starch-IgG. J Nucl Med 32:825–829

    PubMed  CAS  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Bale R, Uprimny C, Von Guggenberg E, Kovacs P, Virgolini I (2005) PET imaging of neuroendocrine tumors using 68Ga-DOTA-Tyr(3)-octreotide: Comparison with somatostatin receptor scintigraphy and computed tomography. Nuklearmedizin 44:A196

    Google Scholar 

  • Govindasvamy N, Quarless JDA, Koch SA (1995) New amine trithiolate tripod ligands and its iron(II) and iron(III) complexes. Am Chem Soc 117:8468–8469

    Article  Google Scholar 

  • Green MA (1993) Metal radionuclides in diagnostic imaging by positron emission tomography (PET). In: Abrams MJ, Murrer BA (eds) Advances in metals in medicine. JAI Press Inc., Greenwich, Connecticut — London, England, pp 75–114

    Google Scholar 

  • Green MA, Welch MJ (1989) Gallium radiopharmaceutical chemistry. Int J Rad Appl Instrum B 16:435–448

    PubMed  CAS  Google Scholar 

  • Greene M, Tucker W (1961) An improved gallium-68 cow. Int J Appl Radiat Isot 12:62–63

    Article  CAS  Google Scholar 

  • Griffiths GL, Chang CH, McBride WJ, Rossi EA, Sheerin A, Tejada GR, Karacay H, Sharkey RM, Horak ID, Hansen HJ, Goldenberg DM (2004) Reagents and methods for PET using bispecific antibody pretargeting and 68Ga-radiolabeled bivalent hapten-peptide-chelate conjugates. J Nucl Med 45:30–39

    PubMed  CAS  Google Scholar 

  • Harris WR, Martell AE (1976) Aqueous complexes of gallium(III). Inorg Chem 15:713–720

    Article  CAS  Google Scholar 

  • Harris WR, Pecoraro V (1983) Thermodynamic binding constants for gallium transferrin. Biochem 22:292–299

    Article  CAS  Google Scholar 

  • Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, Maecke HR, Eisenhut M, Debus J, Haberkorn U (2005) Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46:763–769

    PubMed  CAS  Google Scholar 

  • Henze M, Schuhmacher J, Dimitrakopoulou-Strauss A, Strauss LG, Maecke HR, Eisenhut M, Haberkorn U (2004) Exceptional increase in somatostatin receptor expression in pancreatic neuroendocrine tumour, visualised with 68Ga-DOTATOC PET. Eur J Nucl Med Mol Imaging 31:466

    Article  PubMed  Google Scholar 

  • Henze M, Schumacher T, Hipp P, Kowalski J, Becker D, Doll J, Maecke H, Hofmann M, Debus J, Haberkorn U (2001) PET imaging of somatostatin receptors using [68Ga]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42:1053–1056

    PubMed  CAS  Google Scholar 

  • Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Béhé M, Powell P, Hennig M (1999) Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chemistry A European Journal 5:1016–1023

    Google Scholar 

  • Heppeler A, Jermann E, Gyr T, Dyson RM, Ruser G, Hennig M, Neuburger M, Neuburger-Zehnder M, Kaden T, Maecke H (1999) Coordination-chemical aspects of In3+, Y3+, Ga3+, Cu2+, and Ag+ metal complexes of mono and bifunctional chelators. In: Nicolini M, Mazzi U (eds) Technetium, rhenium and other metals in chemistry and nuclear medicine. SGE Dittoriali, Padua. Vol. 5; pp 65–70

    Google Scholar 

  • Hofmann M, Oei M, Boerner AR, Maecke H, Geworski L, Knapp WH, Krause T (2005) Comparison of Ga-68-DOTATOC and Ga-68-DOTANOC for radiopeptide PET. Nuklearmedizin 44:A58

    Google Scholar 

  • Hofmann M, Maecke H, Börner A, Weckesser E, Schöffski P, Oei M, Schumacher J, Henze M, Heppeler A, Meyer G, Knapp W (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    Article  PubMed  CAS  Google Scholar 

  • Knapp FF, Jr., Mirzadeh S (1994) The continuing important role of radionuclide generator systems for nuclear medicine. Eur J Nucl Med 21:1151–1165

    Article  PubMed  Google Scholar 

  • Kowalski J, Henze M, Schuhmacher J, Maecke HR, Hofmann M, Haberkorn U (2003) Evaluation of Positron Emission Tomography ImagingUsing [68Ga]-DOTA-D Phe1-Tyr3-Octreotide in Comparison to [111In]-DTPAOC SPECT. First Results in Patients with Neuroendocrine Tumors. Mol Imaging Biol 5:42–48

    Article  PubMed  Google Scholar 

  • Kruper WJ, Jr, Rudolf P, Langhoff C (1993) Unexpected selectivity in the alkylation of polyazamacrocycles. J Org Chem 58:3869–3876

    Article  CAS  Google Scholar 

  • Lambrecht R, Sajjad M (1988) Accelerator derived radionuclide generators. Radiochimica Acta 43:171–179

    CAS  Google Scholar 

  • Lewis MR, Raubitschek A, Shively JE (1994) A facile, water-soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates. Bioconjug Chem 5:565–576

    Article  PubMed  CAS  Google Scholar 

  • Loc’h C, Maziere B, Comar D (1980) A new generator for ionic gallium-68. J Nucl Med 21:171–173

    PubMed  CAS  Google Scholar 

  • Luyt LG, Katzenellenbogen JA (2002) A trithiolate tripodal bifunctional ligand for the radiolabeling of peptides with gallium(III). Bioconjug Chem 13:1140–1145

    Article  PubMed  CAS  Google Scholar 

  • Ma R, Welch MJ, Reibenspies J, Martell AE (1995) Stability of metal ion complexes of 1,4,7-tris(2-mercaptoethyl)-1,4,7-triazacylclonane (TACNTM) and molecular structure of In(C12H24N3S3). Inorganica Chimica Acta 236:75–82

    Article  CAS  Google Scholar 

  • Maecke H, Heppeler A, Nock B (1999) Somatostatin analogues labeled with different radionuclides. In: Nicolini M, Mazzi U (eds) Technetium, rhenium and other metals in chemistry and nuclear medicine. SGE Ditoriali, Padua, p 77–91

    Google Scholar 

  • Maecke HR, Smith-Jones P, Maina T, Stolz B, Albert R, Bruns C, Reist H (1993) New octreotide derivatives for in vivo targeting of somatostatin receptorpositive tumors for single photon emission computed tomography (SPECT) and positron emission tomography (PET).Horm Metab Res Suppl 27:12–17

    CAS  Google Scholar 

  • Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA (1996) Tumorselective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 37:1003–1008

    PubMed  CAS  Google Scholar 

  • McMurry TJ, Brechbiel M, Wu C, Gansow OA (1993) Synthesis of 2-(pthiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid: application of the 4-methoxy-2,3,6-trimethylbenzenesulfonamide protecting group in the synthesis of macrocyclic polyamines. Bioconjug Chem 4:236–245

    Article  PubMed  CAS  Google Scholar 

  • Meyer GJ, Maecke H, Schuhmacher J, Knapp WH, Hofmann M (2004) 68Galabelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 31:1097–1104

    Article  PubMed  CAS  Google Scholar 

  • Mirzadeh S, Lambrecht R (1996) Radiochemistry of Germanium. J Radioanal Nucl Chem 202:7–102

    Article  CAS  Google Scholar 

  • Moerlein SM, Welch MJ (1981) The chemistry of gallium and indium as related to radiopharmaceutical production. Int J Nucl Med Biol 8:277–287

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Haratake M, Koiso T, Ishibashi O, Harada K, Nakayama H, Suggii A, Yahara S, Arano Y (2002) Separation of 68Ga from 68Ge using a macroporous organic polymer containing N-methylglucamine groups. Anal Chim Acta 453:135–141

    Article  CAS  Google Scholar 

  • Prata MI, Santos AC, Geraldes CF, de Lima JJ (2000) Structural and in vivo studies of metal chelates of Ga(III) relevant to biomedical imaging. J Inorg Biochem 79:359–363

    Article  PubMed  CAS  Google Scholar 

  • Prata MI, Santos AC, Geraldes CF, de Lima JJ (1999) Characterisation of 67Ga3+ complexes of triaza macrocyclic ligands: biodistribution and clearance studies. Nucl Med Biol 26:707–710

    Article  PubMed  CAS  Google Scholar 

  • Rösch F, Knapp R (2003) Radionuclide generators. In: Rösch F (ed) Radiochemistry and Radiopharmaceutical Chemistry in Life Sciences. Kluwer Academic Publishers, Dordrecht/Boston/London, p 81–118

    Google Scholar 

  • Rösch F, Zhernosekov KP, Filosofov DV, Jahn M, Jennewein M (2005) Processing of 68Ge/68Ga generator eluates for labeling molecular targeting vectors. Nuklearmedizin 44:A191

    Google Scholar 

  • Schuhmacher J, Maier-Borst W (1981) Anew68Ge/68Ga Radioisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot 32:31–36

    Article  CAS  Google Scholar 

  • Schuhmacher J, Zhang H, Doll J, Maecke HR, Matys R, Hauser H, Henze M, Haberkorn U, Eisenhut M (2005) GRP Receptor-Targeted PET of a Rat Pancreas Carcinoma Xenograft in Nude Mice with a 68Ga-Labeled Bombesin(6–14) Analog. J Nucl Med 46:691–699

    PubMed  CAS  Google Scholar 

  • Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, Maecke HR (1994) Gallium-67/gallium-68-[DFO]-octreotide-a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 35:317–325

    PubMed  CAS  Google Scholar 

  • Stolz B, Smith-Jones PM, Albert R, Reist H, Maecke H, Bruns C (1994) Biological characterisation of [67Ga] or [68Ga] labelled DFO-octreotide (SDZ 216-927) for PET studies of somatostatin receptor positive tumors. Horm Metab Res 26:453–459

    Article  PubMed  CAS  Google Scholar 

  • Studer M, Meares CF (1992) Synthesis of novel 1,4,7-triazacyclononane-N,N′,N″-triacetic acid derivatives suitable for protein labeling. Bioconjug Chem 3:337–341

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, Martell AE, Welch MJ (1996) Indium (III) and gallium (III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. J Med Chem 39:458–470

    Article  PubMed  CAS  Google Scholar 

  • Traub T, von Guggenberg E, Kendler D, Eisterer W, Bale R, Dobrozemsky G, Gabriel M, Decristoforo C, Virgolini I (2005) First experiences with Ga-68-DOTA-lanreotide PET in tumor patients. Nuklearmedizin 44:A198

    Google Scholar 

  • Velikyan I, Beyer GJ, Langstrom B (2004) Microwave-supported preparation of 68Ga bioconjugates with high specific radioactivity. Bioconjug Chem 15:554–560

    Article  PubMed  CAS  Google Scholar 

  • Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, Carlsson J, Bergstrom M, Langstrom B, Tolmachev V (2005) Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J Nucl Med 46:1881–1888

    PubMed  CAS  Google Scholar 

  • Yokoyama A, Ohmomo Y, Horiuchi K, Saji H, Tanaka H, Yamamoto K, Ishii Y, Torizuka K (1982) Deferoxamine, a promising bifunctional chelating agent for labeling proteins with gallium-Ga-67 DF-HSA: concise communication. J Nucl Med 23:909–914

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maecke, H.R., André, J.P. (2007). 68Ga-PET Radiopharmacy: A Generator-Based Alternative to 18F-Radiopharmacy. In: Schubiger, P.A., Lehmann, L., Friebe, M. (eds) PET Chemistry. Ernst Schering Research Foundation Workshop, vol 64. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-49527-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49527-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32623-6

  • Online ISBN: 978-3-540-49527-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics