Skip to main content
Book cover

The Andes pp 91–121Cite as

Tectonic Processes along the Chile Convergent Margin

  • Chapter

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The Chile subduction zone, spanning more than 3500 km, provides a unique setting for studying, along a single plate boundary, the factors that govern tectonic processes at convergent margins. At large scale, the Chile trench is segmented by the subduction of the Chile Rise, an active spreading center, and by the Juan Fernández hot spot ridge. In addition, the extreme climatic change from the Atacama Desert in the north to the glacially influenced southern latitudes produces a dramatic variability in the volume of sediment supplied to the trench. The distribution of sediment along the trench is further influenced by the high relief gradients of the segmented oceanic lithosphere.

We interpret new and reprocessed multichannel seismic reflection profiles, and multibeam bathymetric data, to study the variability in tectonic processes along the entire convergent margin. In central and south Chile, where the trench contains thick turbidite infill, accretionary prisms, some 50–60 km wide, have developed. These prisms, however, are ephemeral and can be rapidly removed by high-relief, morphological features on the incoming oceanic plate. Where topographic barriers inhibit the transport of turbidites along the trench, sediment infill abruptly decreases to less than 1 km thick and is confined to a narrow zone at the trench axis. There, all sediment is subducted; the margin is extending by normal faulting and collapsing due to basal tectonic erosion. The transition from accretion to tectonic erosion occurs over short distances (a few tens of km) along the trench.

In the turbidite-starved northern Chile trench, ~1 km of slope debris reaches the trench and is subsequently subducted. There, tectonic erosion is causing pronounced steepening of the margin, associated pervasive extension across the slope and into the emerged coastal area, and consequent collapse of the overriding plate. The volume of subducting material varies little along much of the margin. However, the composition of the material varies from slope debris of upper-plate fragments and material removed from the upper plate by basal erosion, to turbidites derived from the Andes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler Vector. Earth Planet Sci Lett 171:329–334

    Article  Google Scholar 

  • Ballance et al. (1989) Subduction of a large Cretaceous seamount of the Louisville ridge at the Tonga Trench: a model of normal and accelerated tectonic erosion. Tectonics 8:953–962

    Article  Google Scholar 

  • Bandy OL, Rudolfo KS (1964) Distribution of foraminifera and sediments, Peru-Chile Trench area. Deep Sea Res 11:817–837

    Google Scholar 

  • Bangs NL, Cande SC (1997) The episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–505

    Article  Google Scholar 

  • Bangs NL, Cande SC, Lewis SD, Miller JJ (1992) Structural framework of the Chile margin at the Chile Ridge collision zone. Proc Ocean Drill Prog Initial Rep 141:11–21

    Google Scholar 

  • Behrmann JH, Kopf A (2001) Balance or tectonically accreted and subducted sediment at the Chile Triple Junction. Int J Earth Sci 90:753–768

    Article  Google Scholar 

  • Behrmann JH et al. (1992) Proceedings of the Ocean Drilling Program, Initial Reports. Volume 141. Ocean Drill. Program, College Station TX

    Google Scholar 

  • Behrmann JH, Lewis SD, Cande SC, ODP Leg 141 Scientific Party (1994) Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program. Geol Rundsch 83:832–852

    Article  Google Scholar 

  • Block M (1998) Interpretations of MCS data. In: Hinz K et al. (eds) Crustal investigations off-and onshore Nazca/Central Andes (CINCA), BGR Report No. n117.613. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 69–102

    Google Scholar 

  • Bourgois J, Martin H, Lagabrielle Y, Le Moigne J, Frutos Jara J (1996) Subduction-erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area). Geology 24:723–726

    Article  Google Scholar 

  • Bourgois J, Guivel C, Lagabrielle Y, Calmus T, Boulegue J, Daux V (2000) Glacial-interglacial trench supply variation, spreadingridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45–48° S). J Geophys Res 105:8355–8386

    Article  Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res 91:471–496

    Google Scholar 

  • Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile ridge and the Chile trench: geophysical and geothermal evidence. J Geophys Res 92:495–520

    Google Scholar 

  • Caress DW, Chase DN (1996) Improved processing of Hydrosweep DS multibeam data on the RV Maurice Ewing. Marine Geophys Res 18:631–650

    Article  Google Scholar 

  • Davis DM, von Huene R (1987) Inferences on sediment strength and fault friction from structures of the Aleutian Trench. Geology 15: 517–522

    Article  Google Scholar 

  • Delouis BH, Philip H, Dorbath L, Cisternas A (1998) Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys J Int 132:302–338

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Google Scholar 

  • Diaz JL (1999) Sediment subduction and accretion at the Chilean convergent margin between 35° and 40°S. PhD thesis, Christian-Albrechts-Universität zu Kiel

    Google Scholar 

  • Fisher RL, Raitt RW (1962) Topography and structure of the Peru-Chile trench. Deep Sea Res 9:423–443

    Google Scholar 

  • Flueh ER, Vidal N, Ranero CR, Hojka A, von Huene R, Bialas J, Hinz K, Cordoba D, Dañobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off-and onshore Valparaiso, Chile. Tectonophysics 288:251–263

    Article  Google Scholar 

  • Hartley AJ, Jolley EJ (1995) Tectonic implications of Late Cenozoic sedimentation from the Coastal Cordillera of northern Chile (22–24°S). J Geol Soc London 152:51–63

    Google Scholar 

  • Hilde TWC (1983) Sediment subduction vs. accretion around the Pacific. Tectonophysics 99:381–397

    Article  Google Scholar 

  • Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocenter determination in the seimogenic zone of the subducting Nazca plate in north Chile using a combined on-/offshore network. Geophys J Int 138:687–701

    Article  Google Scholar 

  • Husen S, Kissling E, Flueh ER (2000) Local earthquake tomography of shallow subduction in north Chile: a combined onshore and offshore study. J Geophys Res 105:28183–28198

    Article  Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24(2):217–284

    Google Scholar 

  • Kendrick E, Bevis M, Smalley R Jr, Brooks B, Vargas RB, Lauría E, Fortes LPS (2003) The Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Kimura G, et al. (1997) Proceedings of the Ocean Drilling Program, Initial Reports, Volume 170. Ocean Drill Prog, College Station, TX

    Google Scholar 

  • Kudrass HR, Von Rad U, Seyfied H, Andruleit H, Hinz K, Reichert C (1998) Age and facies of sediments of the northern Chilean continental slope — evidence for intense vertical movements, in Crustal investigations off-and onshore Nazca/Central Andes (CINCA). In: Hinz K et al. (eds) BGR Report No. 117.613, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 170–196

    Google Scholar 

  • Lagabrielle Y, Guivel C, Maury R, Bourgois J, Fourcade S, Martin H (2000) Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: the Chile triple junction model. Tectonophysics 326:255–268

    Article  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Laursen J, Scholl D, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21: doi 10,1029/2001TC901023

    Google Scholar 

  • Loveless JP, Hoke GD, Allmendinger RW, González G, Isacks BL, Carrizo DA (2005) Pervasive cracking of the northern Chilean Coastal Cordillera: new evidence of forearc extension. Geology 33:973–976

    Article  Google Scholar 

  • Miller H (1970) Das Problem des hypothetischen “Pazifischen Kontinentes” gesehen von der chilenischen Pazifikkuste. Geol Rundsch 59:927–938

    Article  Google Scholar 

  • Polonia A, Brancolini G, Torelli L, Vera E (1999) Structural variabilità at the active continental margin off southernmost Chile. J Geodyn 27:289–307

    Article  Google Scholar 

  • Polonia A, Brancolini G, Loreto MF, Torelli L (2001) The accretionary complex of southernmost Chile from the analysis of multichannel seismic data. Terra Antartica 8:87–98

    Google Scholar 

  • Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752

    Article  Google Scholar 

  • Ranero CR, von Huene R, Flueh E, Duarte M, Baca D, McIntosh K (2000) A cross-section of the convergent Pacific margin of Nicaragua. Tectonics 19:335–357

    Article  Google Scholar 

  • Ranero CR, von Huene R, Weinrebe W, Barckhausen U (in press) Convergent margin tectonics of Middle America: a marine perspective. In: Alvarado G (ed) Central America, Geology, Hazards and Resources. AA Balkema Publisher

    Google Scholar 

  • Rubio E, Torné M, Vera E, Diaz A (2000) Crustal structure of the southernmost Chilean margin from seismic and gravity data. Tectonophysics 323:39–60

    Article  Google Scholar 

  • Rutland RWR (1971) Andean orogeny and ocean floor spreading. Nature 233:252–255

    Article  Google Scholar 

  • Sallares V, Banero CR (2005) Structure of the North Chile erosional convergent margin off Antofagasta (23°30′ S). J Geophys Res 110: doi 10.1029/2004JB003418

    Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10050

    Article  Google Scholar 

  • Scholl DW, Christensen MN, von Huene R, Marlow MS (1970) Peru-Chile trench sediments and sea-floor spreading. Geol Soc Am Bull 81:1339–1360

    Google Scholar 

  • Scholl DW, von Huene R, Vallier TL, Howell DG (1980) Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geology 8:564–568

    Article  Google Scholar 

  • Schweller WJ, Kulm LD, Prince RA (1981) Tectonics structure, and sedimentary framework of the Perú-Chile Trench. In: Kulm LD, et al. (eds) Nazca Plate: Crustal formation and Andean convergence. Mem Geol Soc Am 154:323–349

    Google Scholar 

  • Smith WHF, Sandwell DT (1994) Bathymetric predictions from dense altimetry and sparse shipboard bathymetry. J Geophys Res 99: 21803–21824

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33:617–62

    Article  Google Scholar 

  • Tebbens SF, Cande SC, Kovacs L, Parra JC, LaBreque JL, Vergara H (1997) The Chile ridge: a tectonic framework. J Geophys Res 102: 2035–2059

    Article  Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Article  Google Scholar 

  • Vannucchi P, Ranero CR, Galeotti S, Straub SM, Scholl DW, McDougall Ried K (2003) Fast rates of subduction erosion along the Costa Rica Pacific margin: implications for non-steady rates of crustal recycling at subduction zones. J Geophys Res 108: doi 10.1029/2002JB002207

    Google Scholar 

  • Vannucchi P, Galeotti S, Clift PD, Ranero CR, von Huene R (2004) Long term subduction erosion along the Middle America Trench offshore Guatemala. Geology

    Google Scholar 

  • von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment starved convergent margin off Antofagasta Chile. J Geophys Res 108: doi 10.1029/2001JB001569

    Google Scholar 

  • von Huene R, Scholl D (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Google Scholar 

  • von Huene R, Corvalan J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, CONDOR Scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16:474–488

    Article  Google Scholar 

  • von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19:314–334

    Article  Google Scholar 

  • von Huene R, Ranero CR, Vannucchi P (2004) A model for subduction erosion. Geology 32:913–916

    Article  Google Scholar 

  • Watts P, Grilli SR (2002) Tsunami generation by submarine mass failure, I: Wavemaker modes. J Wtrwy Port Coast Oc Engrg

    Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of generic mapping tools released. EOS 79(47):579

    Article  Google Scholar 

  • Yañez GA, Ranero CR, von Huene R, Díaz J (2001) A tectonic interpretation of magnetic anomalies across a segment of the convergent margin of the Southern Central Andes (32°–34°S). J Geophys Res 106:6325–6345

    Article  Google Scholar 

  • Yañez GA, Cembrano J, Pardo M, Ranero CR, Selles D (2002) The Challenger-Juan Fernández-Maipo major tectonic transition of the Nazca-Andean subduction system at 33°–34°S: geodynamic evidences and implications. J S Am Earth Sci 15:23–38

    Article  Google Scholar 

  • Zelt CA, Hojka AM, Flueh ER, McIntosh KD (1999) 3D simultaneous seismic refraction and reflection tomography of wide-angle data from the central Chilean margin. Geophys Res Lett 26: 2577–2580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ranero, C.R., von Huene, R., Weinrebe, W., Reichert, C. (2006). Tectonic Processes along the Chile Convergent Margin. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_5

Download citation

Publish with us

Policies and ethics