Skip to main content

Partial Melting in the Central Andean Crust: a Review of Geophysical, Petrophysical, and Petrologic Evidence

  • Chapter
The Andes

Abstract

The thickened crust of the Central Andes is characterized by several first-order geophysical anomalies that seem to reflect the presence of partial melts. Magnetotelluric and geomagnetic deep-sounding studies in Northern Chile have revealed a high conductivity zone (HCZ) beneath the Altiplano Plateau and the Western Cordillera, which is extreme both in terms of its size and integrated conductivity of > 20000 Siemens. Furthermore, this region is characterized by an extremely high seismic attenuation and reduced seismic velocity. The interrelation between the different petrophysical observations, in combination with petrological and heat-flow density studies, strongly indicates a huge area of partially molten rocks that is possibly topped with a thin, saline fluid film. The average melt fraction is deduced to be ∼20 vol.%, which agrees with typical values deduced from eroded migmatites. Based on the distribution and geochemical composition of Pliocene to Quaternary silicic ignimbrites in this area, this zone is thought to be dominated by crustally-derived rhyodacite melts with minor andesitic contribution. An interconnected melt distribution — typical for migmatites - would satisfy both the magnetotelluric and seismic observations. The high melt fraction in this mid-crustal zone should lead to strong weakening, which may be a main cause for the development of the flat topography of the Altiplano Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki K, Chouet B (1975) Origin of coda waves: Source, attenuation, and scattering effects. Phys Earth Planet Inter 80:3322–3342

    Google Scholar 

  • Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the Andes at 30° S latitude. Tectonics 9:789–809

    Article  Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Ann Rev Earth Planet Sci Lett 25:139–174

    Article  Google Scholar 

  • ANCORP Working Group (2003) Seismic imaging of an active continental margin and plateau in the Central Andes (Andean Continental Research Project (ANCORP) 1996). J Geophys Res 108(B7): doi 10.1029/2002JB001771

    Google Scholar 

  • Arndt J, Bartel T, Scheuber E, Schilling FR (1997) Thermal and rheological properties of granodioritic rocks from the Central Andes, North Chile. Tectonophysics 271:75–88

    Article  Google Scholar 

  • Arzi AA (1979) Critical phenomena in the rheology of partially molten rocks. Tectonophysics 44:173–184

    Article  Google Scholar 

  • Asch G, Schurr B, Bohm M, Yuan X, Haberland C, Heit B, Kind R, Woelbern I, Bataille K, Comte D, Pardo M, Viramonte J, Rietbrock A, Giese P (2006) Seismological studies of the Central and Southern Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 443–458, this volume

    Google Scholar 

  • Atherton MP, Gribble CD (1983) Migmatites, melting and metamorphism. Shiva Geology Series, Shiva Publishing, Nantwich UK

    Google Scholar 

  • Babeyko AY, Sobolev SV, Trumbull RB, Oncken O, Lavier LL (2002) Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna Plateau. Earth Planet Sci Lett 199:373–388

    Article  Google Scholar 

  • Bahr K (1997) Electrical anisotropy and conductivity distributions of fractal random networks and of the crust: the scale effect of connectivity. Geophys J Int 130:649–660

    Google Scholar 

  • Baker MCW, Francis PW (1978) Upper Cenozoic volcanism in the Central Andes — ages and volumes. Earth Planet Sci Lett 41:175–187

    Article  Google Scholar 

  • Beaumont C, Jamieson RA Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res 109(B06406): doi 10.1029/2003JB002809

    Google Scholar 

  • Beck S, Zandt G (2002) The nature of orogenic crust in the Central Andes. J Geophys Res 107: doi 10.1029/2000JB000124

    Google Scholar 

  • Beck S, Zandt G, Myers SC, Wallace TC, Silver PG, Drake L (1996) Crustal thickness variations in the Central Andes. Geology 24: 407–410

    Article  Google Scholar 

  • Beere W (1975a) A unifying theory of the stability of penetrating liquid phases and sintering pores. Acta Metall 23:131–138

    Article  Google Scholar 

  • Beere W (1975b) The second stage sintering kinetics of powder compacts. Acta Metall 23:139–145

    Article  Google Scholar 

  • Bock G, Schurr B, Asch G (2000) High-resolution image of the oceanic Moho in the subducting Nazca plate from P-to-S converted waves. Geophys Res Let 27:3929–3932

    Article  Google Scholar 

  • Brasse H (2005) The mantle wedge in the Bolivian orocline in the view of deep electromagnetic soundings. Extended Abstract, 6th International Symposium on Andean Geodynamics, Barcelona

    Google Scholar 

  • Brasse H, Soyer W (2001) A magnetotelluric study in the Southern Chilean Andes. Geophys Res Let 28(19):3757–3760

    Article  Google Scholar 

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107(B5) doi 10.1029/2001JB000391

    Google Scholar 

  • Brown MA, Brown M, Carlson WD, Denison C (1999) Topology of syntectonic melt-flow networks in deep crust: inferences from three-dimensional images of leucosome geometry in migmatites. Am Mineral 84:1793–1818

    Google Scholar 

  • Bruhn D, Groebner N, Kohlstedt DL (2000) An interconnected network of core-forming melts produced by shear deformation. Nature 403:883–886

    Article  Google Scholar 

  • Bruhn D, Kohlstedt DL, Lee KH (2005) The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates. In: Bruhn D, Burlini L (eds) High strain zones: structures and physical properties. Geol Soc Spec Publ 245

    Google Scholar 

  • Büsch W, Schneider G, Mehnert KR (1974) Initial Melting at grain boundaries. Part II: Melting in rocks of granodioritic, quartz dioritic and tonalitic compositions. N Jb Miner Monatshefte 8:345–370

    Google Scholar 

  • Chapman DS, Furlong KP (1992) The thermal state of the lower crust. In: Fountain DM, Arculus RJ, Kay RM (eds) Continental Lower Crust. Development in Geotectonics Volume 23, Elsevier, Amsterdam, pp 179–199

    Google Scholar 

  • Chmielowski J, Zandt G, Haberland C (1999) The Central Andean Altiplano-Puna magma body. Geophys Res Lett 26(6):783–786

    Article  Google Scholar 

  • Coira B, Kay SM, Viramonte J (1993) Upper Cenozoic magmatic evolution of the Argentine Puna — a model for changing subduction geometry. Int Geol Rev 35:677–720

    Google Scholar 

  • Daines MJ, Kohlstedt DL (1997) Influence of deformation on melt topology in peridotites. J Geophys Res 107:10257–10271

    Article  Google Scholar 

  • Davidson J, Harmon R, Wörner G (1991) The source of Central Andean magmas: some considerations. Geol Soc Am Spec P 265:233–243

    Google Scholar 

  • De Silva SL (1989) Altiplano-Puna volcanic complex of the Central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • De Silva SL (1991) Styles of zoning in Central Andean ignimbrites. Insights into magma chamber processes. Geol Soc Am Spec P 265:217–232

    Google Scholar 

  • De Silva SL Francis P (1991) Volcanoes of the Central Andes. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Echternacht F, Tauber S, Eisel M, Brasse H, Schwarz G, Haak V (1997) Electromagnetic study of the active continental margin in Northern Chile. Phys Earth Planet Int, 102(1–2):69–88

    Article  Google Scholar 

  • Feeley TC, Davidson J (1994) Petrology of calc-alkaline lavas at Volcan Ollagüe and the origin of compositional diversity at Central Andean stratovolcanoes. J Petrol 35:1295–1340

    Google Scholar 

  • Francis PW, Sparks RSJ, Hawkesworth CJ, Thorpe RS, Pyle DM, Tait SR, Mantovani MS, McDermott F (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galán caldera, northwest Argentina. Geol Mag 126:515–547

    Article  Google Scholar 

  • Gardeweg M, Ramírez CF (1987) The La Pacana caldera and the Atana ignimbrite — a major ash-flow and resurgent caldera complex in the Andes of Northern Chile. Bull Volcanology 49:547–566

    Article  Google Scholar 

  • Giese P (1994) Geothermal structure of the Central Andean crust — implications for heat transport and rheology. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, 69–76

    Google Scholar 

  • Giese P, Schilling FR (2000) Some consequences from the temperature-heat-paradox in the Altiplano (Central Andes). EOS 81(48):F1136

    Google Scholar 

  • Giese P, Scheuber E, Schilling FR, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. J South Am Earth Sci 12:201–220

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B, Schmidt S, Strunk S (1994) The lithospheric structure of the Central Andes (20–25° S) as inferred from quantitative interpretation of regional gravity. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, 23–48

    Google Scholar 

  • Haberland C (1998) Die Verteilung seismischer Absorption in den Zentralen Anden. Ph.D. thesis, Freie Universität Berlin

    Google Scholar 

  • Haberland C, Rietbrock A (2001) Attenuation tomography in the western Central Andes: a detailed insight into the structure of a magmatic arc. J Geophys Res 106(B6):11151–11167

    Article  Google Scholar 

  • Haberland C, Rietbrock A, Schurr B, Brasse H (2003) Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano Plateau. Geophys Res Lett 30(18):doi 10.1029/2003GL017492

    Google Scholar 

  • Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25(6):599–646

    Article  Google Scholar 

  • Hansen PC (1998) Rank deficient and discrete ill-posed problems. Numerical aspects of linear inversion. Siam, Philadelphia

    Google Scholar 

  • Hashin Z, Shtrikman A (1962) A variational approach to the theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  • Henry SG, Pollack HN (1988) Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. J Geophys Res 93:15153–15162

    Google Scholar 

  • Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime. J Geophys Res 100:1981–2001

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Hoffmann-Rothe A, Ritter O, Janssen C (2004) Correlation of electrical conductivity and structural damage at a major strike-slip fault in Northern Chile. J Geophys Res 109(B10): doi 10.1029/2004JB003030

    Google Scholar 

  • Holness MB (1995) The effect of feldspar on quartz-H2O-CO2 dihedral angels at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites. Contrib Mineral Petrol 118:356–364

    Article  Google Scholar 

  • Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 1227–1230

    Google Scholar 

  • James DE (1971) Andean crustal and upper mantle structure. J Geophys Res 76:3246–3271

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res 109(B06407) doi 10.1029/2003JB00281

    Google Scholar 

  • Jin ZM, Green HW, Zhou Y (1994) Melt topology in partially molten mantle peridotite during ductile deformation. Nature 372:164–167

    Article  Google Scholar 

  • Johnston D, Toksoz M, Timor A (1979) Attenuation of seismic waves in dry and saturated rocks. II. Mechanisms. Geophysics 44(4):691–711

    Article  Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, Central Andes. J Geophys Res 99:24323–24339

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22° to 33° S latitude). In: Skinner B (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Pub 7, pp 27–59

    Google Scholar 

  • Krüger D (1994) Modellierungen zur Struktur elektrisch leitfähiger Zonen in den südlichen zentralen Anden. Berliner Geowiss Abh B21

    Google Scholar 

  • Laporte D, Rapaille C, Provost A (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protholiths. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic Publishers, Dordrecht Boston London, pp 31–54

    Google Scholar 

  • Le Pichon X, Henry P, Goffé B (1997) Uplift of Tibet: from eclogites to granulites — implications for the Andean Plateau and the Variscan belt. Tectonophysics 273:57–76

    Article  Google Scholar 

  • Lezaeta P (2001) Distortion analysis and 3-modeling of magnetotelluric data in the Southern Central Andes. Ph.D. thesis, Freie Universität Berlin

    Google Scholar 

  • Lezaeta P (2002) The confidence limit of the magnetotelluric phase sensitive skew. Earth Planet Space 54(5):451–457

    Google Scholar 

  • Lezaeta P, Brasse H (2001) Electrical conductivity beneath the volcanoes of the NW Argentinian Puna. Geophys Res Lett 28(24):4651–4654

    Article  Google Scholar 

  • Lezaeta P, Haak V (2003) Beyond magnetotelluric decomposition: Induction, current channeling, and magnetotelluric phases over 90°. J Geophys Res 108(B5): doi 10.1029/2001JB000649

    Google Scholar 

  • Lezaeta P, Muñoz M, Brasse H (2000) Magnetotelluric image of the crust and upper mantle in the backarc of the NW Argentinean Andes. Geophys J Int 142:841–854

    Article  Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, De Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana Caldera system, Central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites and implications for contrasting eruption mechanisms. J Petrol 42:459–486

    Article  Google Scholar 

  • Lucassen F (1992) Geologie, Metamorphosegeschichte und Geochemie neugebildeter basischer Kruste im jurassischen magmatischen Bogen der Küstenkordillere Nordchiles, Region Antofagasta 23°25′–24°20′ S. Ph.D. thesis, Technische Universität Berlin

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Romer RL, Dulski P (2001) Composition and density model of the continental crust in an active continental margin — the Central Andes between 18° and 27° S. Tectonophysics 341:195–223

    Article  Google Scholar 

  • Lupulescu A, Watson EB (1999) Low melt fraction connectivity of granitic and tonalitic melts in a mafic crustal rock at 800 °C and 1GPa. Contrib Miner Petrol 134(2–3):202–216.

    Article  Google Scholar 

  • Mavko GM (1980) Velocity and attenuation in partially molten rocks. J Geophys Res 85(B10):5173–5189

    Google Scholar 

  • Mehnert KR (1981) Migmatites and the origin of granitic rocks. Elsevier, Amsterdam

    Google Scholar 

  • Mehnert KR, Büsch W, Schneider G (1973) Initial Melting at grain boundaries of quartz and feldspar in gneisses and granulites. N Jb Miner Monatshefte 4:165–183

    Google Scholar 

  • Nyman MW, Pattison DRM, Ghent ED (1995) Melt extraction during formation of sillimanite and K-feldspar migmatites, west of Revelstoke, British Columbia. J Petrol 36:351–372

    Google Scholar 

  • Ocola LC, Meyer RP (1972) Crustal low-velocity zones under the Peru-Bolivia Altiplano. Geophys J R Astr Soc 30:199–209

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system — facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 3–28, this volume

    Google Scholar 

  • Ort M, Coira BL, Mazzoni MM (1996) Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, Central Andes. Contrib Miner Petrol 123:308–322

    Article  Google Scholar 

  • Partzsch GM (1998) Elektrische Leitfähigkeit partiell geschmolzener Gesteine: experimentelle Untersuchungen, Modellrechnungen und Interpretation einer elektrisch leitfähigen Zone in den zentralen Anden. Berliner Geowiss Abh B26

    Google Scholar 

  • Partzsch GM, Arndt J, Schilling FR (2000) Electrical conductivity and melt distribution of a crustal rock during partial melting. Tectonophysics 317:189–203

    Article  Google Scholar 

  • Patiño Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Ramos VA, Cristillini EO, Perez DJ (2002) The Pampean flat slab of the Central Andes, J S Am Earth Sci 15:59–78

    Article  Google Scholar 

  • Rietbrock A (1999) Velocity structure and seismicity in the Central Andes of Northern Chile and Southern Bolivia. AGU Fall Meeting 1999 Abstracts, EOS supplement

    Google Scholar 

  • Riller U, Oncken O (2003) Growth of the Central Andean Plateau by tectonic segmentation is controlled by the gradient in crustal shortening. J Geol 111:367–384

    Article  Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics 66:174–187

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially-melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28

    Article  Google Scholar 

  • Rutter EH, Neumann DH (1995) Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas. J Geophys Res 100:15697–15715

    Article  Google Scholar 

  • Satherley J, Smedley SL (1985) The electrical conductivity of some hydrous and anhydrous molten silicates as a function of temperature and pressure. Geochim Cosmochim Acta 49:769–777

    Article  Google Scholar 

  • Schilling FR (2003) Does the electrical conductivity of partially molten rocks depend on grain-boundaries? AGU Fall Meeting 2003 Abstracts, EOS supplement

    Google Scholar 

  • Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the Cantral Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter 103:17–31

    Article  Google Scholar 

  • Schmitt AK (2001) Gas-saturated crystallization and degassing in large-volume, crystal-rich dacitic magmas from the Altiplano-Puna, Northern Chile. J Geophys Res 106(B12):30561–305678

    Article  Google Scholar 

  • Schmitt AK, De Silva SL, Trumbull RB, Emmermann R (2001) Magma evolution in the Purico ignimbrite complex, Northern Chile: evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge. Contrib Mineral Petrol 140:680–700

    Google Scholar 

  • Schmitz M, Heinsohn W, Schilling FR (1997) Seismic gravity and petrological evidence for partial melt beneath the thickened Central Andean crust (21–23° S). Tectonophysics 270:313–326

    Article  Google Scholar 

  • Schurr B, Rietbrock A (2004) Deep seismic structure of the Atacama basin, Northern Chile. Geophys Res Lett 31: doi 10.1029/2004GL019796

    Google Scholar 

  • Schurr B, Asch G, Rietbrock A, Trumbull R, Haberland C (2003) Complex patterns of fluid and melt transport in the Central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett 215(1–2):105–119

    Article  Google Scholar 

  • Schwalenberg K, Haak V, Rath V (2002) The application of sensitivity studies on a two-dimensional resistivity model from the Central Andes. Geophys J Int 150:673–686

    Article  Google Scholar 

  • Schwarz G, Krüger D (1997) Resistivity cross section through the southern Central Andes as inferred from magnetotelluric and geomagnetic deep soundings. J Geophys Res 102(B6), 11957–11978

    Article  Google Scholar 

  • Schwarz G, Chong DG, Krüger D, Martinez M, Massow W, Rath V, Viramonte J (1994) Crustal high conductivity zones in the southern Central Andes. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks — a general law. Tectonophysics 291:161–171

    Article  Google Scholar 

  • Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 147–170, this volume

    Google Scholar 

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY, Koulakov I, Oncken O (2006) Mechanism of the Andean orogeny: insight from numerical modeling. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 513–536, this volume

    Google Scholar 

  • Soyer W, Brasse H (2001) A magneto-variation array study in the Central Andes of N Chile and SW Bolivia. Geophys Res Lett 28(15):3023–3026

    Article  Google Scholar 

  • Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139

    Article  Google Scholar 

  • Trumbull RB, Wittenbrink R, Hahne K, Emmermann R, Büsch W, Gerstenberger H, Siebel W (1999) Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26° S) and its geodynamic implications. J S Am Earth Sci 12:135–155

    Article  Google Scholar 

  • Van der Molen I, Paterson M (1979) Experimental deformation of partially melted granite. Contrib Mineral Petrol 70:299–318

    Article  Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30° S and 40° S — plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 375–400, this volume

    Google Scholar 

  • Vietor T, Oncken O (2005) Controls on the shape and kinematics of the Central Andean plateau flanks: insights from numerical modeling. Earth Planet Sci Lett 236(3–4)814–827

    Article  Google Scholar 

  • Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallisation with application to felsic magma segretation and transfer. J Petrol 37:1579–1600

    Google Scholar 

  • Waff HS, Faul UH (1992) Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. J Geophys Res 97:9003–9014

    Google Scholar 

  • Wannamaker PE, Stodt JA, Rijo L (1986) Two-dimensional topographic responses in magnetotelluric models using finite elements. Geophysics 51(11):2131–2144

    Article  Google Scholar 

  • Wark DA, Watson BE (2000) Effect of grain size on the distribution and transport of deep-seated fluids and melts. Geophys Res Lett 27:2029–2032

    Article  Google Scholar 

  • Wdowinski S, Bock Y (1994a) The evolution of deformation and topography of high elevated plateaus 1. Model, numerical analysis, and general results. J Geophys Res 99:7103–7119

    Article  Google Scholar 

  • Wdowinski S, Bock Y (1994b) The evolution of deformation and topography of high elevated plateaus 2. Application to the Central Andes. J Geophys Res 99:7121–7130

    Article  Google Scholar 

  • Whitman D, Isacks BL, Chalelain JL, Chiu JM, Perez A (1992) Attenuation of high-frequency seismic waves beneath the Central Andean Plateau. J Geophys Res 97:19929–19947

    Google Scholar 

  • Wigger P, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn WD, Martinez E, Ricaldi E, Röwer P, Viramonte J (1994) Variation of the crustal structure of the southern Central Andes deduced from seismic refraction investigations. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 23–48

    Google Scholar 

  • Willett SD, Beaumont C (1994) Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature 369:642–645

    Article  Google Scholar 

  • Williams CA, Connors C, Dahlen FA, Price EJ, Suppe J (1994) Effect of the brittle-ductile transition on the topography of compressive mountain belts on Earth and Venus. J Geophys Res 99:19947–19974

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the Central Andes and its geodynamic implications. Earth Planet Sci Lett 199(3–4):389–402

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Schurr B, Graeber F, Rudloff A, Hanka W, Wylegalla K, Tibi R, Haberland C, Rietbrock A, Giese P, Wigger P, Röwer P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408:958–961

    Article  Google Scholar 

  • Zandt G, Velasco AA, Beck SL (1994) Composition and thickness of the southern Altiplano crust, Bolivia. Geology 22:1003–1006

    Article  Google Scholar 

  • Zandt G, Leidig M, Chmielowski J, Baumont D, Yuan X (2003) Seismic detection and characterization of the Altiplano-Puna magma body, Central Andes. Pure Appl Geophys 160:789–807

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schilling, F.R. et al. (2006). Partial Melting in the Central Andean Crust: a Review of Geophysical, Petrophysical, and Petrologic Evidence. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_22

Download citation

Publish with us

Policies and ethics