
5 Mechanical systems on Riemannian
manifolds

5.1 The generalized Newton law

Let (Q, 〈, 〉) be a Riemannian manifold, q = q(t) be a C2-curve on Q and
∇ be the Levi-Civita connection associated to the given Riemannian metric
〈, 〉. The acceleration of q(t) is the covariant derivative of the velocity field
q̇ = q̇(t), that is,

acceleration of q(t)
def
=

Dq̇

dt
. (5.1)

If V is any (local) vector field extending q̇ = q̇(t), we also write, for simplicity,
Dq̇
dt = ∇q̇ q̇ = ∇q̇V . When q̇(t) �= 0, there exists such a V in a neighborhood
of q(t).

In local coordinates (Ω; q1, . . . , qn) of Q, the functions gij = 〈 ∂
∂qi

, ∂
∂qj

〉 and
the Γ k

ij given by ∇ ∂
∂qj

∂
∂qi

=
∑n

k=1 Γ k
ji

∂
∂qk

, are well known C1-functions on

Ω and the expressions 3.20 give each Γ k
ij as a function of the gij(q1, . . . , qn)

and their derivatives, hence as a function of q1, . . . , qn. If (qi, q̇i) are the
corresponding natural coordinates of TQ on τ−1(Ω) (recall that τ : TQ → Q
is the natural projection), one can write:

q̇ =
n∑

i=1

q̇i
∂

∂qi
(5.2)

and so, we have along q = q(t) (see 3.7):

Dq̇

dt
=

n∑
k=1

q̈k +
∑
i,j

q̇iq̇jΓ
k
ij

 ∂

∂qk
(5.3)

The kinetic energy associated to the Riemannian metric 〈, 〉 is the Ck-
function K : TQ → R given by K(vp) = 1

2 〈vp, vp〉.
As we will see in some examples, the masses appear in the definition of

the metric 〈, 〉; the Legendre transformation (see Appendix A) or mass
operator µ is a diffeomorphism from TQ onto T ∗Q,

µ : TQ → T ∗Q (5.4)
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62 5 Mechanical systems on Riemannian manifolds

given by µ(vp)(.) = 〈vp, .〉 for all vp ∈ TQ. TQ is also called the phase space
of velocities and T ∗Q is called the phase space of momenta. Since 〈, 〉p is non
degenerate, we see easily that µ takes the fiber TpQ onto the fiber Tp

∗Q and
µ identifies, diffeomorphically, TQ with T ∗Q. A field of (external) forces
is a C1-differentiable map

F : TQ → T ∗Q (5.5)

that sends the fiber TpQ into the fiber T ∗
pQ, for all p ∈ Q.

We remark that, by definition, F is not necessarily surjective but sends
fibers into fibers. When F(vp) is constant (for all p ∈ Q and vp ∈ TpQ) the
field of forces is said to be positional. As an example of a positional field of
forces one defines

FU (vp) = −dU(p) ∀vp ∈ TpQ, p ∈ Q,

where U : Q → R, the potential energy, is a given C2-differentiable func-
tion. In that case one says that FU is a conservative field of forces. It is
clear that FU is a positional field of forces. The map µ−1 ◦ FU : TQ → TQ
defines, in this case, a vector field X on the manifold Q:

X : p ∈ Q �−→ µ−1 ◦ FU (vp) ∈ TpQ,

that does not depend on vp ∈ TpQ, but on U and p ∈ Q, only. In fact X is
equal to −grad U (- gradient of U); take wp ∈ TpQ and so:

〈X (p), wp〉 = 〈µ−1FU (vp), wp〉 = µ(µ−1FU (vp))(wp)
= FU (vp)(wp) = −dU(p)(wp), that is X (p) = −(grad U)(p).

Exercise 5.1.1. Show that in local coordinates we have

µ(
Dq̇

dt
) =

n∑
j=1

(
d

dt

∂K

∂q̇j
− ∂K

∂qj

)
dqj . (5.6)

A mechanical system on a Riemannian manifold (Q, 〈, 〉) is a triplet
(Q, 〈, 〉,F) where F is an (external) field of forces. The manifold Q is said to
be the configuration space and the corresponding generalized Newton
law is the relation

µ(
Dq̇

dt
) = F(q̇). (5.7)

A motion q = q(t) is a C2-curve, with values on Q, that satisfies
the Newton law (5.7). A conservative mechanical system is a triplet
(Q, 〈, 〉,F = −dU) where U : Q → R is its potential energy. The function
Em = K + U ◦ τ is the mechanical energy.

Proposition 5.1.2. (Conservation of energy) In any conservative mechani-
cal system (Q, <, >,−dU) the mechanical energy Em = K +U ◦ τ is constant
along a given motion q = q(t).
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Proof:

d
dtEm(q̇) = d

dt [K(q̇) + U ◦ τ(q̇)] = d
dt

[ 1
2 〈q̇, q̇〉 + U(q)

]
=

= 〈(Dq̇
dt ), q̇〉 + (dU(q))q̇ = 〈µ−1[−dU(q)], q̇〉 + (dU(q))q̇

= −(dU(q))q̇ + (dU(q))q̇ = 0.

5.2 The Jacobi Riemannian metric

Let (Q, 〈, 〉,−dU) be a conservative mechanical system on a Riemannian
manifold (Q, 〈, 〉) and U be a C2-potential energy. Let vp ∈ TQ be a crit-
ical point of the mechanical energy Em = K + U ◦ τ : TQ → R, that
is, dEm(vp) = 0. In local coordinates we have vp = (qi, q̇i) and Em(vp) =
1
2

∑
ij gij(p)q̇iq̇j + U(q1(p), . . . , qn(p)), so

dEm(qi, q̇i) =
n∑

k=1

1
2

∑
ij

∂gij

∂qk
q̇iq̇j +

∂U

∂qk

 dqk +
n∑

k=1

[∑
i

gikq̇i

]
dq̇k = 0

and that implies the following equations:∑
i

gikq̇i = 0, k = 1, . . . , n, (5.8)

1
2

∑
ij

∂gij

∂qk
q̇iq̇j +

∂U

∂qk

 = 0, k = 1, . . . , n. (5.9)

By (5.8) and (5.9), and since det(gij) �= 0, vp ∈ TQ is a critical point of
Em if, and only if:

q̇i = 0, i = 1, . . . , n, and
∂U

∂qk
(p) = 0.

This means that vp is a critical point of Em if, and only if, p ∈ Q is a
critical point of U and vp = 0p ∈ TpQ.

Let h ∈ R be a (not necessarily regular) value of the mechanical energy
Em with E−1

m (h) �= ∅ and consider the open set of Q:

Qh = {p ∈ Q | U(p) < h}. (5.10)

On the manifold Qh one can define the so called Jacobi metric gh associ-
ated to 〈, 〉; for each p ∈ Qh define gh(p) by
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gh(p)(up, vp)
def
= 2(h − U(p))〈up, vp〉, (5.11)

Since (h − U(p)) > 0 for p ∈ Qh, one sees that gh is a Riemannian metric
on Qh.

Proposition 5.2.1. (Jacobi) The motions of a conservative mechanical sys-
tem (Q, 〈, 〉,−dU) with mechanical energy h are, up to reparametrization,
geodesics of the open manifold Qh with the Jacobi metric associated to 〈, 〉.

Before proving the 5.2.1 one goes to show the following (see [54]):

Proposition 5.2.2. Let (Q, 〈, 〉) be a Riemannian manifold, ρ : Q → R to
be a C2 function and grad ρ denote a vector field on Q, the gradient corre-
sponding to 〈, 〉 of the function ρ. Let ∇ and ∇̃ be the Levi-Civita connections
associated to 〈, 〉 and e2ρ〈, 〉, respectively. Then, for all X, Y ∈ X (Q) we have:

∇̃XY = ∇XY + dρ(X)Y + dρ(Y )X − 〈X, Y 〉gradρ (5.12)

Proof: By the definition of ∇̃ and making �,�= e2ρ〈, 〉, formula (5.19) gives

2 � ∇̃XY, Z �= Y � X, Z � +X � Z, Y � −Z � X, Y �
− � [Y, Z], X � − � [X, Z], Y � − � [Y, X], Z � .

On the other hand we have

Y � X, Z � = Y (e2ρ〈X, Z〉) = e2ρY 〈X, Z〉 + 〈X, Z〉Y (e2ρ) =
= e2ρ[Y 〈X, Z〉 + 〈X, Z〉Y (2ρ)],

so,

2 � ∇̃XY, Z � = e2ρ{Y 〈X, Z〉 + 〈X, Z〉Y (2ρ) + X〈Z, Y 〉 +
+ 〈Z, Y 〉X(2ρ) − Z〈X, Y 〉 − 〈X, Y 〉Z(2ρ)
− 〈[Y, Z], X〉 − 〈[X, Z], Y 〉 − 〈[Y, X], Z〉}.

From (3.19) one obtains

2 � ∇̃XY, Z � = 2e2ρ < ∇XY, Z > +e2ρ{〈X, Z〉Y (2ρ)
+ 〈Z, Y 〉X(2ρ) − 〈X, Y 〉Z(2ρ)}
= 2 � ∇XY, Z � + � X, Z � Y (2ρ)
+ � Z, Y � X(2ρ)− � X, Y � Z(2ρ).

Since Y (2ρ) = 2Y (ρ) = 2dρ(Y ) we have

� ∇̃XY, Z � = � ∇XY, Z � + � X, Z � dρ(Y )
+ � Z, Y � dρ(X)− � X, Y � dρ(Z).



5.2 The Jacobi Riemannian metric 65

The definition of grad ρ gives

dρ(Z) = 〈grad ρ, Z〉

for all Z, thus

〈∇̃XY, Z〉 = 〈∇XY, Z〉 + 〈X, Z〉dρ(Y ) + 〈Z, Y 〉dρ(X)
− 〈X, Y 〉〈grad ρ, Z〉 for all Z.

So, one obtains (5.12).

Proof: (of 5.2.1) One defines ρ : Qh → R by the equality e2ρ = 2(h − U) so
e2ρdρ = −dU and then

e2ρgrad ρ = −grad U with respect to 〈, 〉, (5.13)

that is
2(h − U)dρ = −dU. (5.14)

Let γ = γ(t) be a motion of (Q, 〈, 〉,−dU) with mechanical energy h and
contained in Qh. By (5.7) we have

∇γ̇ γ̇ = −(grad U)(γ(t)). (5.15)

As
2K(γ̇) = 〈γ̇, γ̇〉 = 2(h − U(γ(t)) = e2ρ(γ(t)),

that implies γ̇(t) �= 0 for all t in the maximal interval of γ.
Using (5.12), (5.15), (5.13) and (5.14) one can write

∇̃γ̇ γ̇ = ∇γ̇ γ̇ + 2dρ(γ̇)γ̇ − 〈γ̇, γ̇〉grad ρ

= −(grad U)(γ(t)) + 2dρ(γ̇)γ̇ − e2ρ(γ(t))grad ρ, so

∇̃γ̇ γ̇ = 2dρ(γ̇)γ̇. (5.16)

Let s and s̃ be the arc lengths in 〈, 〉 and �,� respectively. Call µ(s) =
γ(t(s)) and c(s̃) = µ(s(s̃)). So c(s̃) = γ(t(s(s̃))) and c

′
(s̃) = dc(s̃)

ds̃ =
γ̇(t(s(s̃))) dt

ds̃ (s(s̃)) = γ̇(t(s(s̃))).dt(s)
ds .ds(s̃)

ds̃ . But

(
dt(s)
ds

)2 = (
ds(t)
dt

)−2 = 〈γ̇, γ̇〉−1 = e−2ρ(γ(t(s)))

and then
dt(s)
ds

= e−ρ(γ(t(s))). (5.17)

Analogously
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ds(s̃)
ds̃

)2

=
(

ds̃(s)
ds

)−2

=� µ′(s), µ′(s) �−1

= � γ̇(t(s))
dt(s)
ds

, γ̇(t(s))
dt(s)
ds

�−1

=
(

dt(s)
ds

)−2

� γ̇(t(s)), γ̇(t(s)) �−1

that gives (
ds(s̃)
ds̃

)
.

(
dt(s)
ds

)
= � γ̇(t(s)), γ̇(t(s)) �−1/2

= e−ρ(γ(t(s)))〈γ̇(t(s)), γ̇(t(s))〉−1/2

then (ds(s̃)
ds̃ ).(dt(s)

ds ) = e−2ρ(γ(t(s))) and

c′(s̃) = γ̇(t(s(s̃))).e−2ρ(γ(t(s))). (5.18)

Now compute ∇̃c′(s̃)c
′(s̃) using (5.18) and obtain

∇̃c′c′ = ∇̃e−2ργ̇

(
e−2ργ̇

)
= e−2ρ∇̃γ̇

(
e−2ργ̇

)
= e−2ρ[e−2ρ∇̃γ̇ γ̇ + d(e−2ρ)(γ̇)]γ̇

= e−4ρ[∇̃γ̇ γ̇ − 2dρ(γ̇)γ̇];

from (5.16) we get ∇̃c′c′ = 0, so c(s̃) = γ(t(s(s̃))) is a geodesic in the
Jacobi metric.

5.3 Mechanical systems as second order vector fields

Let (Q, 〈, 〉,F) be a mechanical system on the Riemannian manifold
(Q, 〈, 〉) and q(t) a motion, that is, a solution of the generalized Newton
law (Dq̇

dt ) = µ−1(F(q̇)) .
In local coordinates we have (see (5.3)):

n∑
k=1

q̈k +
∑
ij

Γ k
ij q̇iq̇j

 ∂

∂qk
=

n∑
k=1

fk(q, q̇)
∂

∂qk

where the fk(q, q̇) are the components of µ−1(F(q̇)), that is, the Newton law
is locally equivalent to the 2nd order system of ordinary differential equations:

q̈k = −
∑
i,j

Γ k
ij q̇iq̇j + fk(q, q̇), k = 1, . . . , n,

or, to the first order system of ordinary differential equations:
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q̇k = vk

v̇k = −
∑

i,j Γ k
ij(q)vivj + fk(q, q̇), (5.19)

k = 1, . . . , n.
Using (5.6) we also have

d

dt

∂K

∂q̇j
− ∂K

∂qj
=

n∑
k=1

gjkfk(q, q̇), j = 1, . . . , n (5.20)

which are called the Lagrange equations for the system (the free external
forces case can be seen in Appendix A taking K as the Lagrangian function).

This way, in natural coordinates (q, q̇) = (q, v) of TQ we have, well de-
fined, the vector-field

E : (q, v) �−→ ((q, v), (q̇, v̇))

where the (q̇, v̇) are given by (5.19). The map above is a vector field E on
TQ,

E : vp ∈ TQ �−→ E(vp) ∈ T (TQ).

The tangent space TQ is called the phase space and the vector field E
defined on TQ is said to be a second order vector field because the first
equation (see (5.19)) is q̇ = v. This is equivalent to say that any trajectory of
E = E(vp) is the derivative of its projection on Q. In the special case where
F = 0, the vector field E reduces to the geodesic flow S of 〈, 〉, (see (4.21)),
given locally by

S : (q, v) �−→ ((q, v), (v, γ))

where γ = (γ1, . . . , γk) is given by γk = −
∑

i,j Γ k
ijvivj .

In order to write an explicit expression for E = E(vp), let us introduce
the concept of vertical lifting operator . It is an operator denoted by Cvp

associated to an element vp ∈ TpQ. Cvp is a map

Cvp
: TpQ −→ Tvp(TQ)

defined by

Cvp(wp) =
d

ds
(vp + swp) |s=0 . (5.21)

Cvp
takes wp ∈ TpQ into a tangent vector of T (TQ) at the point vp ∈ TQ.

This tangent vector Cvp(wp) is vertical, that is, is tangent at the point vp

to the fiber TpQ since the curve s �→ vp + swp passes through vp at s = 0
and has values on TpQ for all s. In local coordinates, if vp = (qi, vi) and
wp = (qi, wi), we have

Cvp
: (qi, wi) �−→ ((qi, vi), (0, wi))

because the curve vp + swp is given, in local coordinates by vp + swp =
(qi, vi + swi) and its tangent vector at s = 0 is written as ((qi, vi), (0, wi)).
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The map Cvp is linear and injective so is an isomorphism of TpQ onto its
image

Cvp(TpQ) = Tvp(τ−1(p)).

So, the vector field E = E(vp) is given, in local coordinates, by the expression

E(vp) = E((qi, vi)) = ((qi, vi), (vi, γi + fi))

where γi = −
∑

r,s Γ i
rsvrvs and the (fi) are defined by

µ−1(F(vp)) =
n∑

i=1

fi
∂

∂qi
(p).

Then
E(vp) = ((qi, vi), (vi, γi)) + ((qi, vi), (0, fi)), or

E(vp) = S(vp) + Cvp(µ−1(F(vp))). (5.22)

Proposition 5.3.1. The second order vector field E = E(vp) defined on
TQ and associated to the generalized Newton law of the mechanical system
(Q, 〈, 〉,F) is given by the expression (5.22) where S = S(vp) is the geodesic
flow of 〈, 〉. The trajectories of E are the derivatives of the motions satisfying
µ(Dq̇

dt ) = F(q̇). When F(vp) = −dU(p), and h is a regular value of Em, the
manifold E−1

m (h) is invariant under the flow of the vector field E = E(vp).

5.4 Mechanical systems with holonomic constraints

Let F : TQ → T ∗Q be a C1-field of external forces acting on a Riemannian
manifold (Q, 〈, 〉).

A holonomic constraint is a submanifold N ⊂ Q such that dim N <
dim Q. A C2-curve q : I ⊂ R → Q is said to be compatible with N if
q(t) ∈ N for all t ∈ I. In order to obtain motions compatible with N we
have to introduce a field of reactive forces R : TN −→ T ∗Q depending
on Q, 〈, 〉, N and F only, and to consider the generalized Newton law

µ(
Dq̇

dt
) = (F + R)(q̇). (5.23)

The constraint N is said to be perfect (with respect to reactive forces)
or to satisfy d’Alembert principle if, for a given F , the field of reactive
forces R is such that µ−1R(vq) is orthogonal to TqN for all vq ∈ TN . Here
orthogonality is understood with respect to 〈, 〉, µ is the mass operator and ∇
is the Levi-Civita connection associated to the Riemannian structure (Q, 〈, 〉).
Using the decomposition vq = vq

T + vq
⊥ for all q ∈ N and vq ∈ TqQ, that is

TqQ = TqN ⊕ (TqN)⊥, q ∈ N,
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one obtains from (5.23), assuming q̇ �= 0, the following relations:

(∇q̇ q̇)T − [µ−1(F(q̇))]T = 0 (5.24)

µ−1(R)(q̇) = (∇q̇ q̇)⊥ − [µ−1(F(q̇))]⊥. (5.25)

Denoting by D the Levi-Civita connection associated to the Riemannian
metric �,� induced by 〈, 〉 on N , Exercise 5.4.1 shows that if N is per-
fect, the C2 solution curves compatible with N are precisely the motions of
the mechanical system (without constraints) (N, �,�,FN ) where FN (vq) =
µN [(µ−1F(vq))T ], vq ∈ TqN , µN being the mass operator of (N,�,�).

In fact, since Dq̇ q̇ = (∇q̇ q̇)T (by Exercise 5.4.1) one obtains from (5.24)
that

µN (Dq̇ q̇) = FN (q̇) = µN ([µ−1F(q̇)]T ) (5.26)

which is the generalized Newton law corresponding to (N,�,�,FN ).
Also, from (5.25) we see that

µ−1(R)(q̇) = ∇q̇ q̇ − (∇q̇ q̇)T − [µ−1F(q̇)]⊥,

that is,
µ−1(R)(q̇) = ∇q̇ q̇ − Dq̇ q̇ − [µ−1F(q̇)]⊥. (5.27)

If X, Y are local vector fields on N and X̄, Ȳ be local extensions to Q, we
have

B(X, Y ) = ∇X̄ Ȳ − DXY (5.28)

where B is bilinear and symmetric with B(X, Y )(q) depending only on X(q)
and Y (q); B is called the second fundamental form of the embedding
i : N → Q (see [17]) So, from (5.27) and (5.28) we can write µ−1(R)(q̇) =
B(q̇, q̇) − [µ−1F(q̇)]⊥, suggesting that

R(vq) = µ[B(vq, vq) − [µ−1F(vq)]⊥] ∈ T ∗
q Q (5.29)

for all q ∈ N and vq ∈ TqN . The last expression gives the way to compute
the reactive force introduced in (5.23) when the constraint is perfect.

Using (5.6) for µN (Dq̇ q̇) with q̇ �= 0, in local coordinates of N , and also
(5.26), we obtain the so-called Lagrange equations for obtaining the mo-
tions compatible with the perfect constraints without computing the reaction
force of the constraints.

Exercise 5.4.1. Let N be a submanifold of a Riemannian manifold (Q, 〈, 〉)
with Levi-Civita connection ∇. For any pair of vector fields X, Y on N we
define DXY as the vector field on N that at the point p ∈ N is equal to
(DXY )(p) = [(∇X̄ Ȳ )(p)]T where X̄, Ȳ are local vector fields that extend X
and Y in a neighborhood of p ∈ Q, respectively, [(∇X̄ Ȳ )(p)]T being the or-
thogonal projection of (∇X̄ Ȳ )(p) onto TpN , under 〈, 〉. Show that (DXY )(p)
does not depend on the chosen extensions and that
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D : X (N) × X (N) → X (N)

has the properties of an affine connection. Verify also that D is symmetric
and compatible with the pseudo-Riemannian metric �,� induced by 〈, 〉 on
N . So, D is the Levi-Civita connection associated to the pseudo-Riemannian
manifold (N,�,�).

5.5 Some classical examples

The study of a system of particles with or without constraints starts, in
classical analytical mechanics, with the consideration of a manifold of config-
urations Q endowed, in general, with two metrics, (, ) and 〈, 〉; the first one
is called the spatial metric and the second is the one corresponding to the
kinetic energy that defines the mass operator µ : TQ → T ∗Q. With the two
metrics one introduces the tensor of inertia I : X (Q) → X (Q) characterized
by the relation

(I(X), Z) = 〈X, Z〉 (5.30)

for all X, Z ∈ X (Q). It is clear that:

i) I is non degenerate with respect to (, ) so I−1 exists.
ii) I is symmetric with respect to (, ), since:

(I(X), Z) = 〈X, Z〉 = 〈Z, X〉 = (I(Z), X) = (X, I(Z)).

iii) I is symmetric with respect to 〈, 〉. In fact,

(I(I(X)), Z) = 〈I(X), Z〉 and

(I(I(X)), Z) = (I(X), I(Z)) = (I(I(Z)), X) = 〈I(Z), X〉
iv) I−1 is symmetric with respect to 〈, 〉 and (, ):

〈I−1(X), Z〉 = (X, Z) = (X, I(I−1(Z))) = (I(I−1(Z)), X) = 〈I−1(Z), X〉

and

(I−1(X), Z) = (I−1(X), I(I−1(Z))) = 〈I−1(X), I−1(Z)〉
= (I(I−1(X)), I−1(Z)) = (X, I−1(Z)).

v) Assume (, ) and 〈, 〉 are positive definite. Then I and I−1 are positive
definite with respect to the metrics:

(I(X), X) = 〈X, X〉;

〈I(X), X〉 = 〈I(X), I−1(I(X))〉 = (I(X), I(X));

〈I−1(X), X〉 = (X, X);

(I−1(X), X) = (I−1(X), I(I−1(X))) = 〈I−1(X), I−1(X)〉.
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In the applications, the usual forces are given by a map F : TQ → TQ
which is fiber preserving, that is, F (TpQ) ⊂ TpQ for all p ∈ Q; the notion of
work is introduced using the spatial metric. So, the work of F (vp) along wp

is defined as (F (vp), wp). To obtain the external field of forces F : TQ → T ∗Q
from F we write

F def
= µI−1F (5.31)

and, then, the generalized Newton law can be written under one of the two
equivalent forms:

Dq̇

dt
= I−1F (q̇) or I(

Dq̇

dt
) = F (q̇)

(In (5.31), as in the last formulae, I is considered as a fiber preserving map
I : TQ −→ TQ.)

Example 5.5.1. The system of n mass points
Let k be a three dimensional oriented Euclidean vector space also con-

sidered as affine space associated to itself. A pair (qi, mi) such that qi ∈ k
and mi > 0 is said to be a mass point and mi is the mass of point qi, i =
1, . . . , n. To give n mass points is to consider q = (q1, . . . , qn) ∈ kn and
(m1, . . . , mn) ∈ R+

n.
Assume that at each point qi ∈ k acts an external force fi

ext =
fi

ext(q, q̇) ∈ k and (n − 1) internal forces fij ∈ k, j ∈ {1, . . . , n}\{i},
due to the action of qj on qi. The laws, in classical mechanics, determining
the motions qi(t) of the mass points (qi, mi) are the following:

I - Newton laws:

miq̈i = fi
def
= (fi

ext +
n∑

j=1
j 
=i

fij), i = 1, . . . , n.

II - Principle of action and reaction:
fij and (qi − qj) are linearly dependent and fij = −fji.
The two laws above imply the following:
(a)

∑n
i=1 miq̈i =

∑n
i=1 fi

ext

(b)
∑n

i=1 miq̈i × (qi − c) =
∑n

i=1 fi
ext × (qi − c) for any c ∈ k.

(here × means the usual vector product in k).

In fact, case (a) is trivial. Using Newton’s law one proves case (b) under
the hypothesis c = 0, provided that

∑
i,j fij×qi = 0; but since fij×(qi−qj) =

0, we have∑
i,j

fij × qi =
∑
i,j

fij × qj = −
∑
i,j

fji × qj = −
∑
i,j

fij × qi = 0.

The case (b) for arbitrary c ∈ k follows from case (a) and from case (b)
with c = 0.
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Fig. 5.1. System of n = 3 mass points.

The kinetic energy of a motion is K = 1
2

∑n
i=1 mi(q̇i, q̇i) where (, ) is

the inner product of k. The manifold Q = kn is the configuration space that
can be endowed with two Riemannian metrics: (u, v) = (u1, v1)+. . .+(un, vn),
the spatial metric, and 〈u, v〉 = m1(u1, v1) + . . . + mn(un, vn), the metric
corresponding to the kinetic energy, where the masses appear.

The Levi-Civita connection ∇ associated to 〈, 〉 has the gij as constant
functions, so the Christoffel symbols are all zero (see 3.2.6) and then

Dq̇

dt
= q̈ = (q̈1, . . . , q̈n).

The mass operator µ : Tkn → T ∗kn is defined by µ(wx)(.) = 〈wx, .〉 for
all wx ∈ Txkn ∼= kn. If the usual forces are given by F : Tkn → Tkn with
F = (f1, . . . , fn), one defines F : Tkn → T ∗kn, the field of external forces,
using the formula F = µI−1F where I is given by (5.30). Then one can write:

F(vx)ux = (µI−1F )(vx)ux = 〈I−1F (vx), ux〉
= (I ◦ I−1F (vx), ux) = (F (vx), ux),

so,

F(vx)ux =
n∑

i=1

(fi(vx), ux
i), where ux = (ux

1, . . . , ux
n). (5.32)
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Then F(vx)ux is the total work of the external forces fi(vx) along ux
i.

From the generalized Newton law (5.7) we have

F(q̇)ux = µ(
Dq̇

dt
)ux = µ(q̈)ux = 〈q̈, ux〉 =

n∑
i=1

(miq̈i, ux
i)

and (5.32) implies F(q̇)ux =
∑n

i=1(fi(q, q̇), ux
i); so, since ux is arbitrary in

kn one obtains the classical Newton’s law:

miq̈i = fi(q, q̇), i = 1, . . . , n,

and conversely.

θ

ϕ

0

l

l

(q   , m   )1 1

1

(q   , m   )2 2

2

Fig. 5.2. Planar double pendulum.

Example 5.5.2. - The planar double pendulum One may consider two
mass points (q1, m1) and (q2, m2), qi ∈ R

2, i = 1, 2, in the configuration
space Q = R

2 × R
2 = R

4 and a holonomic constraint N defined by the
conditions:

| q1 − 0 |2 = �1
2 (5.33)

| q2 − q1 |2 = �2
2, (5.34)

where 0 ∈ R
2 is the origin. If a, b ∈ R

2, a.b denotes the usual inner product
of R

2. Let u = (u1, u2) and v = (v1, v2) vectors in R
4, that is, ui, vi,∈ R

2, i =
1, 2.

The spatial metric in R
4 is given by

(u, v) = u1.v1 + u2.v2,

and
〈u, v〉 = m1u1.v1 + m2u2.v2
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is the metric corresponding to the kinetic energy

K(q̇) =
1
2
[m1q̇1.q̇1 + m2q̇2.q̇2], q̇ = (q̇1, q̇2) ∈ R

4.

The Levi-Civita connection ∇ associated to the metric 〈, 〉 gives the acceler-
ation of q(t) = (q1(t), q2(t)) ∈ R

4 with Christoffel symbols equal to zero:

Dq̇

dt
= q̈ = (q̈1, q̈2). (5.35)

The usual external forces acting on q1 and q2 are

F1 = (0, m1g) and F2 = (0, m2g),

respectively. As in the previous 5.5.1, one defines the field of external forces

F : T (R2 × R
2) → T ∗(R2 × R

2)

using the total work of the physical external forces:

F(q̇)(u1, u2) = (F1(q̇), u1) + (F2(q̇), u2) (5.36)

where Fi(q̇) = Fi = (0, mig), i = 1, 2.
Assuming that the submanifold N defined by (5.33) and (5.34) is a perfect

constraint, that is, satisfies the d’Alembert principle, we have by (5.23) that
for any C2 curve compatible with N ,

R(q̇) = µ(
Dq̇

dt
) − F(q̇), R(q̇) ∈ T ∗

q(t)Q,

is such that the vector µ−1(R(q̇)) is, at the point q(t) ∈ N , orthogonal to
Tq(t)N with respect to the metric 〈, 〉, for all t; that is,

〈µ−1R(q̇), (v1, v2)〉 = 0 (5.37)

for all (v1, v2) ∈ Tq(t)N . But (v1, v2) ∈ Tq(t)N means that v1 and v2 in R
2

have to satisfy:

v1.(q1 − 0) = 0 (5.38)
(v2 − v1).(q2 − q1) = 0 (5.39)

where (5.38) and (5.39) were obtained by differentiation, with respect to time,
of (5.33) and (5.34), respectively. If one denotes

Iµ−1R(q̇)
def
= (R1(q̇), R2(q̇)), (5.40)

condition (5.37) and the definitions (5.30) and (5.40) give

0 = 〈µ−1R(q̇), (v1, v2)〉 = (Iµ−1R(q̇), (v1, v2))
= ((R1(q̇), R2(q̇)), (v1, v2)) = (R1(q̇)).v1 + (R2(q̇)).v2
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so, R1(q̇) and R2(q̇) defined in (5.40) satisfy

(R1(q̇)).v1 + (R2(q̇)).v2 = 0 (5.41)

for all v1, v2 in R
2 that verify (5.38) and (5.39).

From (5.35), and the definition of µ we obtain

µ(
Dq̇

dt
)(u1, u2) = 〈Dq̇

dt
, (u1, u2)〉 = 〈(q̈1, q̈2), (u1, u2)〉

= m1q̈1.u1 + m2q̈2.u2. (5.42)

From (5.23), (5.36), (5.40) and (5.42) we have

m1q̈1.u1 + m2q̈2.u2 = (F1(q̇)).u1 + (F2(q̇)).u2 + R(q̇)(u1, u2)
= (F1(q̇)).u1 + (F2(q̇)).u2 + (R1(q̇)).u1 + (R2(q̇)).u2;

in fact,

R(q̇)(u1, u2) = µI−1(R1(q̇), R2(q̇))(u1, u2)
= 〈I−1(R1(q̇), R2(q̇)), (u1, u2)〉
= ((R1(q̇), R2(q̇)), (u1, u2))
= (R1(q̇)).u1 + (R2(q̇)).u2 ,

and then

m1q̈1.u1 + m2q̈iu2 = (F1(q̇) + R1(q̇)).u1 + (F2(q̇) + R2(q̇)).u2 ;

since (u1, u2) ∈ R
2 × R

2 is arbitrary (see (5.24)) we have

m1q̈1 = F1(q̇) + R1(q̇)
m2q̈2 = F2(q̇) + R2(q̇). (5.43)

Equations (5.43) are the classical Newton law for two mass points;
R1(q̇), R2(q̇) are the constraint’s reactions that have to satisfy (5.41) for all
(v1, v2) such that (5.38) and (5.39) hold, that is, ”the virtual work of the
reactive forces is equal to zero (classical d’Alembert principle)”.

One can also show that (5.41) for all (v1, v2), under the hypotheses that
(5.38) and (5.39) hold, is equivalent to

R2(q̇) = ρ(q2 − q1)
R1(q̇) + R2(q̇) = α(q1 − 0), (ρ, α ∈ R).

Let us derive now the Lagrange equations (5.20) corresponding to the
generalized Newton law (5.26) for the planar double pendulum. From (5.36)
the field of external forces is given by
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F(q̇)(u1, u2) = (F1(q̇), u1) + (F2(q̇), u2) = (m1u
y
1 + m2u

y
2)g

provided that u1 = (ux
1 , uy

1) and u2 = (ux
2 , uy

2).
The function U : R

2 × R
2 → R defined by

U(q1, q2) = −m1gy1 − m2gy2,

where q1 = (x1, y1) and q2 = (x2, y2), are such that F(vp) = −dU(p), vp ∈
TpR

4. So, F is a conservative field of forces. The manifold N is a torus
with coordinates (ϕ, θ), so, the potential energy U and the kinetic energy K
restricted to N are Ū and K̄ respectively:

Ū = −m1g�1 cos θ − m2g(�1 cos θ + �2 cos ϕ)

K̄ =
1
2
[m1(q̇1, q̇1) + m2(q̇2, q̇2)] =

1
2

2∑
i=1

mi(ẋ2
i + ẏ2

i )

where q̇1 = (ẋ1, ẏ1) and q̇2 = (ẋ2, ẏ2) for x1 = �1 sin θ, y1 = �1 cos θ, x2 =
�1 sin θ + �2 sinϕ, y2 = �1 cos θ + �2 cos ϕ. Then ẋ1 = �1θ̇ cos θ, ẏ1 =
−�1θ̇ sin θ, ẋ2 = �1θ̇ cos θ + �2ϕ̇ cos ϕ, ẏ2 = −�1θ̇ sin θ − �2ϕ̇ sinϕ and con-
sequently:

∂Ū

∂θ
= (m1 + m2)g�1 sin θ,

∂Ū

∂ϕ
= m2g�2 sinϕ;

∂K̄

∂θ
= m1ẋ1

∂ẋ1

∂θ
+ m1ẏ1

∂ẏ1

∂θ
+ m2ẋ2

∂ẋ2

∂θ
+ m2ẏ2

∂ẏ2

∂θ

= m1�1θ̇ cos θ(−�1θ̇ sin θ) + m1�1θ̇ sin θ(�1θ̇ cos θ)
+ m2(�1θ̇ cos θ + �2ϕ̇ cos ϕ)(−�1θ̇ sin θ)
+ m2(�1θ̇ sin θ + �2ϕ̇ sinϕ)�1θ̇ cos θ,

i.e.,
∂K̄

∂θ
= m2�1�2ϕ̇θ̇ sin(ϕ − θ);

∂K̄

∂ϕ
= m2ẋ2

∂ẋ2

∂ϕ
+ m2ẏ2

∂ẏ2

∂ϕ

= m2(�1θ̇ cos θ + �2ϕ̇ cos ϕ)(−�2ϕ̇ sinϕ)
+ m2(�1θ̇ sin θ + �2ϕ̇ sinϕ)�2ϕ̇ cos ϕ,

i.e.,
∂K̄

∂ϕ
= m2�1�2ϕ̇θ̇ sin(θ − ϕ);
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∂K̄

∂θ̇
= m1�1

2θ̇ cos2 θ + m1�1
2θ̇ sin2 θ + m2(�1θ̇ cos θ + �2ϕ̇ cos ϕ)�1 cos θ

+ m2(�1θ̇ sin θ + �ϕ̇ sinϕ)�1 sin θ,

i.e.,
∂K̄

∂θ̇
= m1�1

2θ̇ + m2�
2
1θ̇ + m2�1�2ϕ̇ cos(θ − ϕ);

∂K̄

∂ϕ̇
= m2(�1θ̇ cos θ + �2ϕ̇ cos ϕ)�2 cos ϕ

+ m2(�1θ̇ sin θ + �2ϕ̇ sinϕ)�2 sinϕ,

i.e.,
∂K̄

∂ϕ̇
= m2�2

2ϕ̇ + m2�1�2θ̇ cos(θ − ϕ).

The two Lagrange’s equations are

d

dt

∂K̄

∂θ̇
− ∂K̄

∂θ
= −∂Ū

∂θ
,

d

dt

∂K̄

∂ϕ̇
− ∂K̄

∂ϕ
= −∂Ū

∂ϕ
,

i.e.

d

dt
[m1�1

2θ̇ + m2�1
2θ̇ + m2�1�2ϕ̇ cos(θ − ϕ)] − m2�1�2ϕ̇θ̇ sin(θ − ϕ)

= −(m1 + m2)g�1 sin θ

d

dt
[m2�2

2ϕ̇ + m2�1�2θ̇ cos(θ − ϕ)] − m2�1�2ϕ̇θ̇ sin(θ − ϕ)

= −m2g�2 sinϕ.

.
These two equations determine a second order system of ordinary differ-

ential equations on the torus of coordinates (θ, ϕ):

(m1 + m2)�21θ̈ + m2�1�2[ϕ̈ cos(θ − ϕ) − ϕ̇(θ̇ − ϕ̇) sin(θ − ϕ)] −
− m2�1�2ϕ̇θ̇ sin(θ − ϕ) +
+ (m1 + m2)g�1 sin θ = 0, (5.44)

m2�
2
2ϕ̈ + m2�1�2[θ̈ cos(θ − ϕ) − θ̇(θ̇ − ϕ̇) sin(θ − ϕ)] −

− m2�1�2ϕ̇θ̇ sin(θ − ϕ) + m2g�2 sinϕ = 0. (5.45)

One can compute θ̈ and ϕ̈ in (5.44) and (5.45) and get a system of two
ordinary differential equations in the normal form; in fact the matrix
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m2�1�2 cos(θ − ϕ) m2�
2
2


is positive definite, with determinant equal to

m1m2�
2
1�

2
2 + m2

2�
2
1�

2
2 sin2(θ − ϕ) > 0.

The mechanical energy Em = K̄ + Ū is a first integral of system (5.44),
(5.45) (see 5.1.2) expressed as:

Em =
1
2
(m1 + m2)�21θ̇

2 +
1
2
m2�

2
2ϕ̇

2 + m2�1�2θ̇ϕ̇ cos(θ − ϕ) −

− (m1 + m2)g�1 cos θ − m2g�2 cos ϕ.

The critical points are the zero vectors 0p ∈ TpN such that dŪ(p) = 0,
that is, ∂Ū

∂θ (p) = ∂Ū
∂ϕ (p) = 0, or, equivalently, p = (θ, ϕ) such that sin θ =

sinϕ = 0; so, one has 4 critical configurations on the torus N :

p1 = (0, 0), p2 = (0, π), p3 = (−π, 0) and p4 = (π, π).

5.6 The dynamics of rigid bodies

Let K and k be two oriented Euclidean vector spaces also considered as
affine spaces associated to K and k, respectively. Assume that both spaces
have dimension 3 so, each one has well defined the vector product operation
(denoted by ×) corresponding to the inner product (, ).

An isometry M : K → k is a distance preserving map, that is, ‖X−Y ‖ =
‖MX −MY ‖ for all X, Y ∈ K. The induced map M∗ : K → k is defined by:
(0 ∈ K is the zero vector)

M∗X = M(X) − M(0), for all X ∈ K (5.46)

Proposition 5.6.1. Let M∗ be the induced map of an isometry M . Then
one has the following:

1. M∗ is modulus preserving.
2. M∗ preserves inner products and is linear.
3. M∗ is a bijection, so M is an affine (bijective) transformation.
4. The inverse of M is an isometry.
5. If M∗ is orientation preserving then M∗ preserves vector product.

Proof:
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1. ‖M∗X‖ = ‖M(X) − M(0)‖ = ‖X − 0‖ = ‖X‖.
2. One has

(M∗X, M∗Y ) =
1
2
(‖M∗X‖2 + ‖M∗Y ‖2 − ‖M∗X − M∗Y ‖2)

=
1
2
(‖X‖2 + ‖Y ‖2 − ‖X − Y ‖2) = (X, Y ).

So, M∗ preserves inner product. Moreover M∗ is linear: for any α ∈ R

and X ∈ K we have

‖M∗(αX) − αM∗X‖2

= ‖M∗(αX)‖2 + α2‖M∗X‖2 − 2(M∗(αx), αM∗X)
= ‖αX‖2 + α2‖X‖2 − 2α(M∗(αX), M∗X)
= 2α2‖X‖2 − 2α(αX, X) = 0;

and

‖M∗(X − Y ) − (M∗X − M∗Y )‖2

= ‖M∗(X − Y )‖2 + ‖M∗X − M∗Y ‖2 − 2(M∗(X − Y ), M∗X − M∗Y )
= ‖X − Y ‖2 + ‖X − Y ‖2 − 2(X − Y, X) + 2(X − Y, Y ) = 0.

3. Since M∗ is linear, it is enough to prove that M∗ is an injection; but if
M∗X = 0 (0 ∈ k is the zero vector) one has ‖M∗X‖ = ‖X‖ = 0, so
X = 0 and M∗ has an inverse (M∗)−1.

4. The map N : k → K defined by

N(x) = (M∗)−1(x − M(0)) for all x ∈ k, (5.47)

is the inverse of M since by (5.46) and (5.47) we have:

M(N(x)) = M(0) + M∗(N(x)) = M(0) + (x − M(0)) = x

But (5.47) gives N(0) = −(M∗)−1(M(0)), so,

N(x) = (M∗)−1x − (M∗)−1(M(0)) = N(0) + (M∗)−1x (5.48)

and N is an isometry with N∗ = (M∗)−1 as induced map. In fact (5.48)
shows that N∗ = (M∗)−1 and (5.47) implies:

‖N(x) − N(y)‖ = ‖(M∗)−1x − (M∗)−1y‖
= ‖M∗(M∗)−1x − M∗(M∗)−1y‖ = ‖x − y‖,

so N preserves distances.

Exercise 5.6.2. Prove property 5. in Proposition 5.6.1.
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An isometry M : K → k is said to be a proper isometry if its induced
map M∗ : K → k is orientation preserving.

A rigid motion of K relative to k is a C2 curve

M : t �−→ Mt

where Mt is a proper isometry. If, moreover, Mt(0) = 0 for all t, then M is
said to be a rotation.

Proposition 5.6.3. Any rigid motion M of K relative to k is such that Mt

has a unique decomposition Mt = Tt ◦ Rt where Rt = Mt
∗ : K → k defines a

rotation and Tt : k → k is given by Ttx = x+ r(t), that is, Tt is a translation
in k, for each t.

Proof: From (5.46) we have:

Mt(X) = Mt
∗X + Mt(0) = RtX + Mt(0)

= Tt(RtX) = (Tt ◦ Rt)X

where Tt(x)
def
= x + r(t) for all x ∈ k, r(t)

def
= Mt(0). If Mt = T̄t ◦ R̄t is

another decomposition such that T̄t(x) = x + r̄(t) for all x ∈ k and R̄t0 = o
then T̄t(R̄tX) = Tt(Mt

∗X) or R̄tX + r̄(t) = M∗
t X + r(t) for all X ∈ K; in

particular for X = 0 one gets r(t) = r̄(t) and consequently R̄t = Mt
∗.

A rigid motion M is said to be translational if in the (unique) decom-
position Mt = Tt ◦ Mt

∗, the linear isometry Mt
∗ does not depend on t, that

is, Mt
∗ = Mto

∗ for some to. In that case we have Mt(X) = Mto

∗X + r(t).
We will derive now, the expression that describes the kinematics of a

rigid motion M of a (moving) system K with respect to a (stationary)
system k, that is, for t in some interval I of the real line, Mt : K → k is
the corresponding proper isometry. Let us denote by Q(t) ∈ K a moving C2

radius vector also defined in I and let q(t) = Mt(Q(t)) be the radius vector,
in k, corresponding to the action of Mt on the moving point Q(t). Let us
denote by r(t) ∈ k the vector r(t) = Mt(0).

Taking into account that Mt(X) = Mt
∗X + Mt(0) for all X ∈ K one

obtains:
q(t) = Mt(Q(t)) = M∗

t Q(t) + r(t). (5.49)

By differentiating (5.49) with respect to time one has

q̇(t) = Ṁ∗
t Q(t) + M∗

t Q̇(t) + ṙ(t). (5.50)

Special cases:

a) If the rigid motion M is translational, that is, Mt
∗ = Mto

∗ for all t,
one obtains from (5.50) that
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q̇(t) = Mto

∗Q̇(t) + ṙ(t) (5.51)

and so, the absolute velocity q̇(t) is equal to the sum of the rela-
tive velocity Mto

∗Q̇(t) with the velocity ṙ(t) (of the origin 0) of the
moving system K.

b) If the rigid motion M is a rotation of the moving system K with respect
to the stationary system k, that is, if r(t) = 0 for all t, one obtains from
(5.49):

q(t) = Mt
∗Q(t) and q̇(t) = Ṁt

∗
Q(t) + Mt

∗Q̇(t). (5.52)

If, moreover, Q(t) = ξ = constant, (5.52) shows that

q(t) = Mt
∗ξ for all t (5.53)

and the motion of q(t) is called a transferred rotation of ξ.

Exercise 5.6.4. Assume it is given a skew-symmetric linear operator A :
V → V acting on an oriented 3-dimensional Euclidean vector space V . Prove
that there exists a unique vector ω ∈ V such that Ay = ω × y for all y ∈ V ,
and also that ω = 0 if and only if A = 0. We use to denote simply A = ω×.

Let us consider the induced linear map Mt
∗ associated to a rigid motion

M : t → Mt of K with respect to k. One can construct two linear operators
(with C1 dependence on time):

Ṁ∗
t (Mt

∗)−1 : k → k and (Mt
∗)−1Ṁ∗

t : K → K.

From Proposition 5.6.1 (2. and 3.) Mt
∗ is a linear isometry:

(M∗
t X, M∗

t Y ) = (X, Y ), for all X, Y ∈ K. (5.54)

By differentiating (5.54) with respect to time we obtain

(Ṁ∗
t X, Mt

∗Y ) + (Mt
∗X, Ṁ∗

t Y ) = 0, for all X, Y ∈ K. (5.55)

Since (Mt
∗)−1 is also a linear isometry one gets from (5.55) that

((M∗
t )−1Ṁ∗

t X, Y ) + (X, (M∗
t )−1Ṁ∗

t Y )) = 0, for all X, Y ∈ K (5.56)

and also

(Ṁ∗
t (Mt

∗)−1x, y) + (x, Ṁ∗
t (Mt

∗)−1y) = 0 for all x, y ∈ k, (5.57)

where x = M∗
t X and y = Mt

∗Y are arbitrary in k. Then (5.56) and (5.57)
show that (M∗

t )−1Ṁ∗
t and Ṁ∗

t (M∗
t )−1 are skew-symmetric linear operators

acting on K and k, respectively. Using the result of Exercise 5.6.4 above one
can state the following:
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Proposition 5.6.5. Let M : t → Mt be a rigid motion of K with respect
to k and Mt

∗ its induced linear isometry. Then there exist unique vectors
Ω(t) ∈ K and ω(t) ∈ k such that (Mt

∗)−1Ṁ∗
t = Ω(t)× and Ṁ∗

t (Mt
∗)−1 =

ω(t)×. Moreover ω(t) = Mt
∗Ω(t).

Proof: We only need to prove that ω(t) = Mt
∗Ω(t). But from the definition

of Ω(t) we know that

(Mt
∗)−1Ṁ∗

t Y = Ω(t) × Y for all Y ∈ K;

so, making Y = (Mt
∗)−1y, one obtains

(Mt
∗)−1Ṁ∗

t (Mt
∗)−1y = Ω(t) × (Mt

∗)−1y,

and then
Ṁ∗

t (Mt)−1y = Mt
∗[Ω(t) × (Mt

∗)−1y].

The last expression and Proposition 5.6.1 (5.) show that

Ṁ∗
t Mt

−1y = [Mt
∗Ω(t)] × y for all y ∈ k,

thus the definition and the uniqueness of ω(t) enable us to conclude the
result.

We will now give the interpretation of ω(t) and Ω(t) when we are dealing
with the special cases considered above. We start with a rotation M (r(t) = 0
for all t) such that Q(t) = ξ = constant, that is, the motion of q(t) is a
transferred rotation of ξ ∈ K. We have the following result:

Proposition 5.6.6. If q(t) is a transferred rotation of ξ, to each time t for
which Ṁ∗

t �= 0 there corresponds an axis of rotation, that is, a line in k
through the origin whose points have zero velocity at that time. Each point
out of the axis of rotation has velocity orthogonal to the axis with the modulus
proportional to the distance from the point to the mentioned axis; if, other-
wise, we have Ṁ∗

t = 0, then all the points in k have zero velocity at this time
t.

Proof: By (5.53) we have
q̇(t) = Ṁ∗

t ξ. (5.58)

If Ṁ∗
t = 0, (5.58) shows that q̇(t) = 0. Assume otherwise Ṁ∗

t �= 0; in this
last case (5.53) and (5.58) imply that

q̇(t) = Ṁ∗
t (Mt

∗)−1q(t). (5.59)

One sees that the skew-symmetric linear operator Ṁ∗
t (Mt

∗)−1 : k → k
is non zero: in fact Ṁ∗

t (Mt
∗)−1 = 0 implies Ṁ∗

t = 0 (contradiction). From
Proposition 5.6.5 there exists a unique non zero vector ω(t) ∈ k such that
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Ṁ∗
t (Mt

∗)−1 = ω(t)×; (5.60)

then equations (5.59) and (5.60) imply that

q̇(t) = ω(t) × q(t). (5.61)

The instantaneous axis of rotation at the time t is the line in k
through the origin and direction ρω(t), ρ ∈ R, and (5.61) shows that |q̇(t)| =
|ω(t)| |q(t)| sin θ where |q(t)| sin θ is the distance from q(t) to the axis of
rotation .

Another case to be considered is a general rotation (r(t) = 0 for all t); so
equations (5.52) imply

q̇(t) = Ṁ∗
t (Mt

∗)−1q(t) + Mt
∗Q̇(t) (5.62)

and using Proposition 5.6.5 there exists a unique ω(t) ∈ k so that equation
(5.62) can be written

q̇(t) = ω(t) × q(t) + M∗
t Q̇(t). (5.63)

So, for a rotation M , the absolute velocity q̇(t) is equal to the sum of
the relative velocity Mt

∗Q̇(t) and the transferred velocity of rotation
ω(t) × q(t).

The dynamics of mass points in a non-inertial frame can be studied
by assuming that k is an inertial and that K is a non-inertial coordinate
system subjected to a rigid motion M : t → Mt. From (5.50) we know that
q̇(t) = Ṁ∗

t Q(t) + Mt
∗Q̇(t) + ṙ(t). Let us suppose also that the motion of the

point q ∈ k with mass m > 0 satisfies the Newton’s equation

mq̈ = f(q, q̇); (5.64)

so we have:

f(q, q̇) = mq̈ = m[M̈∗
t Q(t) + 2Ṁ∗

t Q̇(t) + Mt
∗Q̈(t) + r̈(t)]. (5.65)

The special case in which M is translational (M∗
t = M∗

to
= constant)

implies that
mM∗

to
Q̈(t) = m(q̈ − r̈) = f(q, q̇) − mr̈(t)

or
mQ̈(t) = (Mto

∗)−1f(q, q̇) − (Mto

∗)−1mr̈(t).

The case in which M is a rotation (r(t) = 0 for all t) gives from (5.65):

mQ̈(t) = (Mt
∗)−1[f(q, q̇) − mM̈∗

t Q(t) − 2mṀ∗
t Q̇(t)],

so

mQ̈(t) = (Mt
∗)−1f(q, q̇) − 2mΩ(t) × Q̇(t) − m(Mt

∗)−1M̈∗
t Q(t). (5.66)
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From the definition of Ω(t) we have

(Mt
∗)−1Ṁ∗

t Y = Ω(t) × Y or

Ṁ∗
t Y = Mt

∗(Ω(t) × Y ) for all Y ∈ K; (5.67)

The derivative of (5.67) gives

M̈∗
t Y = Ṁ∗

t (Ω(t) × Y ) + Mt
∗(Ω̇(t) × Y )

and so,
(Mt

∗)−1M̈∗
t Y = Ω(t) × (Ω(t) × Y ) + Ω̇(t) × Y

for all Y ∈ K and, in particular, for Y = Q(t), that is,

(Mt
∗)−1M̈∗

t Q(t) = Ω(t) × (Ω(t) × Q(t)) + Ω̇(t) × Q(t)

and this last equality can be introduced in (5.66) giving, after setting
(Mt

∗)−1f(q, q̇) = F (t, q, q̇) :

mQ̈(t) = − mΩ(t) × (Ω(t) × Q(t)) − 2mΩ(t) × Q̇(t)

− mΩ̇(t) × Q(t) + F (t, q, q̇)

where one calls
F1 = −mΩ̇(t) × Q(t): the inertial force of rotation,
F2 = −2mΩ(t) × Q̇(t): the Coriolis force,
F3 = −mΩ(t) × (Ω(t) × Q(t)): the centrifugal force.

Ω x Q

Ω x Q(           )−m Ω xF   =3

Ω

0

Q

Fig. 5.3. Centrifugal force.

Thus one can state the following:

Proposition 5.6.7. The motion in a (non inertial) rotating coordinate sys-
tem takes place as if three additional inertial forces (the inertial force of
rotation F1, the Coriolis force F2 and the centrifugal force F3) together with
the external force F (t, q, q̇) = (Mt

∗)−1f(q, q̇) acted on every moving point
Q(t) of mass m.
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For the purposes of giving a mathematical definition of a rigid body, we
start by saying that a body is a bounded borelian set S ⊂ K, and a rigid
body S ⊂ K is a bounded connected Borel set S ⊂ K such that during the
action of any rigid motion M : t �→ Mt of K relative to k, the points ξ ∈ S
do not move, that is

Q(t, ξ) = ξ for any t and any ξ ∈ S. (5.68)

The distribution of the masses on S will be considered in the sequel.
Without loss of generality one assumes, from now on, that the origin O of K
belongs to S.

A rigid motion M of K relative to k induces, by restriction, a motion of
S relative to k, and, when S is a rigid body, we have from (5.49) and (5.68):

q(t, ξ) = Mt(Q(t, ξ)) = Mt(ξ) = Mt
∗ξ + r(t) (5.69)

for any t and any ξ ∈ S.
If a rigid motion is a rotation (r(t) ≡ 0), its action on the rigid body S is

given, from (5.69), by the equation

q(t, ξ) = Mt
∗ξ, for all ξ ∈ S, (5.70)

that is, by a transferred rotation of each ξ ∈ S; so, a rotation acting on a
rigid body S is said to be a motion of S with a fixed point, the origin
0 ∈ K, since r(t) = Mt(0) = 0. At each instant t, either the image Mt(S)
of S has an instantaneous axis of rotation passing through 0 ∈ k, the points
q(t, ξ) ∈ Mt(S) with velocities ω(t) × q(t, ξ), or all the points of Mt(S) have
zero velocity, according what states Proposition 5.6.6 above.

If M is translational (Mt
∗ = Mto

∗ for all t), its action on a rigid body S
is given, from (5.69) by the equation

q(t, ξ) = Mto

∗ξ + r(t) = Mto

∗ξ + Mt(0)

so, q̇(t, ξ) = ṙ(t), that is, the velocity of any point of Mt(S) is equal to the
velocity ṙ(t) of Mt(0).

We will introduce now the notions of mass, center of mass, kinetic
energy and kinetic or angular momentum of a rigid body S.

A distribution of mass on a rigid body S is defined through a positive
scalar measure m on K; the following hypothesis is often used:

m(U) > 0 for all nonempty open subset U of S. (5.71)

(Here we are considering the induced topology; in particular m(S) > 0 if
S �= ∅).

The center of mass of S corresponding to a distribution of mass m is
the point G ∈ K given by
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G =
1

m(S)

∫
S

ξdm(ξ) (5.72)

where m(S) is the total mass of the rigid body S which is a positive number
(see the fundamental hypothesis).

Under the action of a rigid motion t → Mt, the center of mass describes
a curve in k given by:

g(t)
def
= Mt(G) =

1
m(S)

∫
S

Mtξdm(ξ) =
1

m(S)

∫
S

q(t, ξ)dm(ξ) (5.73)

Proposition 5.6.8. The velocity q̇(t, ξ) of a point ξ of a given rigid body S
under the action of a rigid motion t → Mt is given by

q̇(t, ξ) = ġ(t) + ω(t) × [q(t, ξ) − g(t)]

where ω(t)× = Ṁ∗
t (Mt

∗)−1.

Proof: By (5.68) and (5.69) we have for all ξ ∈ K:

q(t, ξ) = Mt
∗ξ + r(t) and ξ = (Mt

∗)−1[q(t, ξ) − r(t)];

so, by derivative one obtains:

q̇(t, ξ) = Ṁ∗
t ξ + ṙ(t) = Ṁ∗

t (Mt
∗)−1[q(t, ξ) − r(t)] + ṙ(t) or

q̇(t, ξ) = ω(t) × [q(t, ξ) − r(t)] + ṙ(t), for all ξ ∈ K. (5.74)

Choosing ξ = G we get

ġ(t) = ω(t) × [g(t) − r(t)] + ṙ(t); (5.75)

then (5.74) and (5.75) prove the result.

The kinetic energy of the motion of a rigid body S at a certain time t
is, by definition,

Kc(t) =
1
2

∫
S

| q̇(t, ξ) |2 dm(ξ) (5.76)

The vectors ω(t) and Ω(t) = (M∗
t )−1ω(t) characterized by the equalities

Ṁ∗
t (M∗

t )−1 = ω(t)× and (M∗
t )−1Ṁ∗

t = Ω(t)× are called the instantaneous
angular velocities relative to k and K, respectively.

The angular momentum relative to k of the motion of S at a certain
time t is the vector

p(t) =
∫

S

[q(t, ξ) × q̇(t, ξ)]dm(ξ) (5.77)

and the angular momentum relative to the body is
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P (t) = (Mt
∗)−1p(t) (5.78)

Special case: rigid body with a fixed point.
In this case r(t) = 0 for all t and then:

q(t, ξ) = M∗
t ξ, q̇(t, ξ) = ω(t) × q(t, ξ);

Kc(t) =
1
2

∫
S

| ω(t) × q(t, ξ)|2dm(ξ) =
1
2

∫
S

|Ω(t) × ξ|2dm(ξ)

p(t) =
∫

S

[M∗
t ξ × (ω(t) × M∗

t ξ)]dm(ξ);

P (t) =
∫

S

[ξ × (Ω(t) × ξ)]dm(ξ). (5.79)

The last expression (5.79) suggests how to give a definition for the inertia
operator of a rigid body S:

A : X ∈ K �−→ [
∫

S

ξ × (X × ξ)dm(ξ)] ∈ K. (5.80)

Proposition 5.6.9. The inertia operator A of a rigid body S ⊂ K is sym-
metric and positive with respect to the inner product of K. If, moreover, S
has at least two points whose radii vectors are linearly independent and the
distribution of mass satisfies (5.71), then A is positive definite.

Proof:

(AX, Y ) = (Y,

∫
S

ξ × (X × ξ)dm(ξ)) =
∫

S

(Y, ξ × (X × ξ))dm(ξ)

and then
(AX, Y ) =

∫
S

(X × ξ, Y × ξ)dm(ξ) = (X, AY ), (5.81)

so A is symmetric. Assume now that (AY, Y ) =
∫

S
|Y × ξ|2dm(ξ) = 0. This

implies that the set E = {ξ ∈ S||Y × ξ| �= 0} has measure m(E) = 0.
On the other hand, if there exist a, b ∈ S linearly independent then there
exist neighborhoods Ua, Ub in K of a and b, such that v1, v2 are linearly
independent for all v1 ∈ Ua and v2 ∈ Ub. From the hypothesis on the measure
m we have m(Ua ∩ S) > 0 and m(Ub ∩ S) > 0; so, there exist u ∈ Ua ∩ S and
v ∈ Ub ∩ S such that u, v /∈ E, that is, |Y × u| = |Y × v| = 0; since u and v
are linearly independent, Y = 0, that is, A is positive definite.

If we come back to the special case of the motion of a rigid body S with
a fixed point O ∈ K, we have from (5.79):
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P (t) = AΩ(t)

Kc(t) =
1
2
(AΩ(t), Ω(t)). (5.82)

In fact,

Kc(t) =
1
2

∫
S

|Ω(t) × ξ|2dm(ξ) =
1
2

∫
S

(Ω(t), ξ × (Ω(t) × ξ))dm(ξ)

=
1
2
(Ω(t),

∫
S

ξ × (Ω(t) × ξ)dm(ξ))

=
1
2
(Ω(t), AΩ(t)).

Another remark on the inertia operator A is the following: since A is
linear and symmetric, there exists an orthonormal basis (E1, E2, E3) in K
where Ei is an eigenvector of a (real) eigenvalue Ii of A; since A is positive,
Ii ≥ 0, i = 1, 2, 3. If Ω(t) = Ω1(t)E1 + Ω2(t)E2 + Ω3(t)E3 we have

Kc(t) =
1
2
(I1Ω1

2(t) + I2Ω2
2(t) + I3Ω3

2(t)).

Since AEi = IiEi, i = 1, 2, 3, and because we had assumed, without loss
of generality, that the fixed point 0 belongs to S, the three lines: 0+λEi, λ ∈
R, i = 1, 2, 3, are mutually orthogonal, and are called the principal axis of
S at the point 0.

The set {Ω ∈ K|(AΩ, Ω) = 1} is called the inertia ellipsoid of the
rigid body S at the point 0. The equation of such ellipsoid, with respect to
the reference frame (0, E1, E2, E3), is

I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3 = 1

where Ω = Ω1E1 + Ω2E2 + Ω3E3.

Special case: motion of a rigid body with a fixed axis.
If S ⊂ K is a rigid body with a fixed point (r(t) = Mt(0) = 0 for all

t) and if ω(t) = ω �= 0 is constant, we say that S rotates around the axis
e = ω

|ω| ∈ k with constant angular velocity ω. In this case, the motions
q(t, ξ) of S satisfy:

q̇(t, ξ) = ω × q(t, ξ)
q(0, ξ) = M∗

o ξ.

The solution of that ordinary differential equation, with the initial condi-
tion above, can be easily found. In fact let ω̄ = ω× be the skew symmetric
operator corresponding to the vector ω �= 0; the solution is
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q(t, ξ) = exp(tω̄)M∗
o ξ

Since in the present case q(t, ξ) = M∗
t ξ one has:

Mt
∗ = exp(tω̄)Mo

∗

Exercise 5.6.10. Assume that S rotates around the axis e = ω
|ω| with con-

stant angular velocity; then show that:
1) The distance ρ(ξ) between q(t, ξ) and the axis {λe|λ ∈ R} does not

depend on t.
2) The kinetic energy is given by

Kc(t) =
1
2
Ie|ω|2, where Ie =

∫
S

ρ2(ξ)dm(ξ)

is called the moment of inertia of the rigid body with respect to the axis
{λe|λ ∈ R}.

3) Ω(t) = (Mt
∗)−1ω = Ω is constant and

Kc(t) =
1
2
IΩ |Ω|2, where

IΩ =
∫

S

|E × ξ|2dm(ξ)

is the moment of inertia of the rigid body with respect to the axis {λE|λ ∈
R}, E = Ω

|Ω| .
4) The eigenvalues I1, I2 and I3 of the inertia operator A are the momenta

of inertia of the rigid body with respect to the principal axis of S.

Exercise 5.6.11. (Steiner’s theorem) The moment of inertia of the rigid
body with respect to an axis is equal to the sum of the moment of inertia
with respect to another axis through the center of mass and parallel to the
first one plus m(S)d2 where d is the distance between the two axes.

The dynamics of a rigid body S is introduced for bodies S that have
at least three non-colinear points. Let us fix, from now on, a proper linear
isometry B : K → k. The Lie group SO(k; 3) of all proper (linear) orthogonal
operators of k is a compact manifold with dimension three. The configura-
tion space of a rigid body is a six-dimensional manifold, namely k×SO(k; 3).

Proposition 5.6.12. The set of all proper isometries M of K onto k is
diffeomorphic to the six-dimensional manifold k × SO(k; 3).

Proof: Let us consider the map

ΦB : M �−→ (M(0), M∗B−1) (5.83)
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where B is the linear isometry fixed above and M∗ is the linear map associ-
ated to M , that is,

M∗(X) = M(X) − M(0) for all X ∈ K.

It is easy to see that ΦB is differentiable, injective and has a differentiable
inverse ΨB given by

ΨB : (r, h) ∈ k × SO(k; 3) �−→ N

where N is the proper isometry defined by N(X) = r + hB(X).
By (5.69) the motion of S is given by

q(t, ξ) = Mt
∗(ξ) + r(t), r(t) = Mt(0);

taking into account the map ΦB (see (5.69)), to the proper isometry Mt there
corresponds a pair (r(t), h(t)) ∈ k × SO(k; 3) that is:

ΦB(Mt) = (r(t), h(t) = Mt
∗B−1). (5.84)

So, we can write:

q(t, ξ) = r(t) + Mt
∗(ξ) = r(t) + h(t)Bξ. (5.85)

Let us denote by β the σ-algebra of all Borel sets of K, by λ a
real-valued measure on (K, β) and let f : K → R be a (real-valued)
λ-measurable function. The correspondence

ν : E ∈ β �−→
∫

E

f(ξ)dλ(ξ) (5.86)

is a real-valued measure on (K, β). Moreover, for any λ-measurable function
g : K → R, one has ∫

E

g(ξ)dν(ξ)
def
=

∫
E

g(ξ)f(ξ)dλ(ξ). (5.87)

Given a vector-valued λ-measurable function G : K → k, one obtains
(taking in k a positive orthonormal basis) its components gi, i = 1, 2, 3, that
are (real-valued) λ-measurable functions. So, the vector ν(E) =

∫
E

G(ξ)dλ(ξ)
has three components:

νi(E) =
∫

E

gi(ξ)dλ(ξ), i = 1, 2, 3. (5.88)

It can be also introduced the notion of vector-valued measure on (K, β)
or measure on (K, β) with values on k, through the utilization of its three
components. In fact if Φ is a measure on (K, β) with values on k and Φ1, Φ2, Φ3
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its components in a positive orthonormal basis of k, and given a Φ-measurable
(real-valued) function f : K → R, one denotes by

∫
E

f(ξ)dΦ(ξ) the vector in
k with components

∫
E

f(ξ)dΦi(ξ), i = 1, 2, 3. Given a Φ-measurable vector-
valued function v : K → k, we have that

∫
E

v(ξ).dΦ(ξ) is the number given by∑
i(
∫

E
vi(ξ)dΦi(ξ)) and

∫
E

v(ξ) × dΦ(ξ) is the vector in k with components:∫
E

v2(ξ)dΦ3(ξ) −
∫

E

v3(ξ)dΦ2(ξ);∫
E

v3(ξ)dΦ1(ξ) −
∫

E

v1(ξ)dΦ3(ξ);∫
E

v1(ξ)dΦ2(ξ) −
∫

E

v2(ξ)dΦ1(ξ).

eq If ν is the vector-valued measure introduced by (5.88) depending on a
λ-measurable function G : K → k with components gi : K → R, we have∫

E

(v(ξ), dν(ξ)) =
∫

E

(v(ξ), G(ξ))dλ(ξ) and∫
E

v(ξ) × dν(ξ) =
∫

E

[v(ξ) × G(ξ)]dλ(ξ).

We want to consider now the notion of (physical) fields of forces acting
on a rigid body S. If S is under the action of the gravitational acceleration
g ∈ k, |g| = g, one understands that each m-measurable subset E ⊂ S with
mass m(E), is subjected to an external force m(E)g. So, one can define the
weight field of forces as a vector-valued measure on S:

E ⊂ S �−→ m(E)g =
∫

E

gdm(ξ). (5.89)

In general, a field of forces acting on S ⊂ K is a law

w ∈ T (k × SO(k; 3)) −→ fw

where fw is a vector-valued measure on S with values on k.
Since q(t, ξ) = r(t) + h(t)Bξ (see (5.85) and so:

q̇(t, ξ) = ṙ(t) + ḣBξ, (5.90)

we see that to each w = (u, s) ∈ T(r,h)(k × SO(k; 3)) there correspond the
maps q, v : K → k defined by

q(ξ) = r + hBξ, v(ξ) = u + sBξ. (5.91)

It is usual, in Physics, to consider surface forces, volume forces, etc., in
the following way: one defines on S a (real-valued) measure σ and a bounded
function α : k×k → k such that the vector-valued measure on S, with values
on k, given by:
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fw(E) =
∫

E

α(q(ξ), v(ξ))dσ(ξ) (5.92)

for any Borel subset E ⊂ S, is well defined.
As in the case of a finite system of mass points, it is usual to consider the

field of external forces fw
ext and the field of internal forces fw

int.
Given a rigid motion M : t �→ Mt of K with respect to k, from (5.85) and
(5.90) each proper isometry Mt is represented by the pair (r(t), h(t)) ∈ k ×
SO(k, 3) and, at this point, the tangent vector w(t) = (ṙ(t), ḣ(t)) determines
the measures

ft
ext = fw(t)

ext and ft
int = fw(t)

int, for each t.

We say that two fields of forces fw and gw, acting on a rigid body S ⊂ K,
are said to be equivalent with respect to Mt if

∫
S

dft(ξ) =
∫

S

dgt(ξ) and

∫
S

Mtξ × dft(ξ) =
∫

S

Mtξ × dgt(ξ) (5.93)

As in the case of a finite number of mass points, the fundamental laws,
in classical mechanics, relative to the motions of a rigid body S, are:

I - Newton law
“The sum of the internal and external fields of forces is, at each time t,
equal to the kinematical distribution Dt (assumed to be well defined)”,
that is:

Dt(E)
def
=

∫
E

q̈(t, ξ)dm(ξ) =
∫

E

dft
ext(ξ) +

∫
E

dft
int(ξ),

for all Borel subsets E of S.
II - Action and reaction principle:

“The field of internal forces fw
int is equivalent to zero with respect to any

proper isometry Mt of an arbitrary rigid motion M of K relative to k.”

The general equations for the motion of a rigid body S are the equations
EG1) and EG2) below that follow from I and II:

EG1) ∫
S

q̈(t, ξ)dm(ξ) =
∫

S

dft
ext(ξ)

def
= Ft

ext (5.94)

EG2) ∫
S

[(q(t, ξ) − c) × q̈(t, ξ)]dm(ξ) =
∫

S

(q(t, ξ) − c) × dft
ext(ξ)

def
= Pt,c

ext for all c ∈ k.

(5.95)
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Exercise 5.6.13. Prove the following formula that gives the variation of the
kinetic energy Kc(t) (see (5.76)):

dKc(t)
dt

=
∫

S

(q̇(t, ξ), dft
ext(ξ)) = (ġ(t), Ft

ext) + (ω(t), Pt,g(t)
ext),

where Ft
ext and Pt,c

ext (for c = g(t)) appear in EG1 and EG2.

A rigid body S is said to be free under the action of a rigid motion M : t �→
Mt of K relatively to k if ft

ext is equivalent to zero with respect to Mt for
all t. In particular, if fw

ext = 0 that is, in the absence of external forces, the
rigid body is said to be isolated; for an (approximate) example we can think
about the rolling of a spaceship.

If G is the center of mass of S, that is, G = 1
m(S)

∫
S

ξdm(ξ), then g(t) =
MtG = 1

m(S)

∫
S

Mtξdm(ξ) = 1
m(S)

∫
S

q(t, ξ)dm(ξ).
Differentiating twice with respect to time one has:

m(S)g̈(t) =
∫

S

q̈(t, ξ)dm(ξ);

by EG1) and assuming that S is free, one obtains g̈(t) = 0 for all t:

Proposition 5.6.14. If a rigid body S is free under the action of M : t �→
Mt, its center of mass moves uniformly and linearly. Moreover, the kinetic
momentum and the kinetic energy are constants of motion.

Proof: From (5.77) one obtains

ṗ(t) =
∫

S

[q(t, ξ) × q̈(t, ξ)]dm(ξ)

and EG2) (with c = 0) implies:

ṗ(t) =
∫

S

q(t, ξ) × dft
ext(ξ) =

∫
S

Mt(ξ) × dft
ext(ξ);

but the fact that S is free under the action of M : t �→ Mt, together with
(5.93), yields ṗ(t) = 0. By an analogous argument with the expression of
dKc(t)

dt given by the result of Exercise 5.6.13 we see that dKc(t)
dt = 0; so, p(t)

and Kc(t) are constants of motion. More precisely, since p(t) is a vector-valued
constant of motion, one obtains four (scalar valued) constants of motion for
any rigid body S free under the action of M .

Assume we are looking at an inertial coordinate system where the center of
mass is stationary. Then
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Proposition 5.6.15. A free rigid body rotates around its center of mass as
if the center of mass were fixed.

Let us consider the motion of a rigid body around a stationary point,
in the absence of external forces. In this case, there exist four real valued
constants of motion given by Proposition 13.5. One can also consider the
induced functions

Kc : T (SO(k; 3)) −→ R p : T (SO(k; 3)) −→ k, (5.96)

defined by

sh ∈ T (SO(k; 3)) �−→ Kc(sh) =
1
2

∫
S

|sBξ|2dm(ξ),

sh ∈ T (SO(k; 3)) �−→ p(sh) =
∫

S

(hBξ × sBξ)dm(ξ), (5.97)

respectively. In general (if the rigid body does not have any particular sym-
metry) the four scalar-valued maps (Kc and the components pi of p in a basis
of k) defined on the six-dimensional manifold T (SO(k, 3)) are independent
in the sense that they do not have critical points, that is, the inverse image
of any value (Ko, po) (if non empty) is a two dimensional orientable compact
invariant manifold, provided that the value Ko of Kc(sh) is positive. More-
over, Ko > 0 implies that the vector field induced on the inverse image of
(Ko, po) by (Kc, p) has no singular points, that is, each connected component
(Kc, p)−1 (Ko, po) is a bi-dimensional torus.

Proposition 5.6.16. The angular momentum P (t) relative to a rigid body
S that is free under the action of M : t �→ Mt, satisfies the Euler
equation: Ṗ (t) = P (t) × Ω(t). Moreover, Ω(t) is given by the relation,
AΩ̇(t) = [AΩ(t)] × Ω(t), A being the inertia operator.

Proof: In fact, p(t) = Mt
∗P (t), so by Proposition 5.6.14 we have

ṗ(t) = Ṁ∗
t P (t) + M∗

t Ṗ (t) = 0, and so

Ṗ (t) = −(Mt
∗)−1Ṁ∗

t P (t) = −Ω(t) × P (t) = P (t) × Ω(t).

But, since P (t) = AΩ(t), we also have AΩ̇(t) = [AΩ(t)] × Ω(t).

Proposition 5.6.17. In the motion of a rigid body S with a fixed point,
subjected to a field of external forces, the kinetic momenta p(t) and P (t)
satisfy the equations

ṗ(t) =
∫

S

(Mt
∗ξ) × dft

ext(ξ),

Ṗ (t) = P (t) × Ω(t) +
∫

S

ξ × [(Mt
∗)−1dft

ext(ξ)].
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Proof: From (5.77) one obtains ṗ(t) =
∫

S
[q(t, ξ) × q̈(t, ξ)]dm(ξ) and since

there is a fixed point we can write q(t, ξ) = Mt
∗ξ; using EG2) with c = 0 we

have the equation for ṗ(t). Since P (t) = (Mt
∗)−1p(t) and using again (5.77)

one can write by differentiating:

Ṗ (t) = (Ṁ∗
t )−1

∫
S

[q(t, ξ) × q̇(t, ξ)]dm(ξ) + (Mt
∗)−1ṗ(t);

but Mt
∗(Mt

∗)−1 = Id implies, by differentiating, that

(Ṁ∗
t )−1 = −(Mt

∗)−1Ṁ∗
t (Mt

∗)−1;

so,

Ṗ (t) =
∫

S

[ξ × (Mt
∗)−1dft

ext(ξ)]

− Ω(t) × [(Mt
∗)−1

∫
S

[q(t, ξ) × q̇(t, ξ)]dm(ξ)]

and finally,

Ṗ (t) = P (t) × Ω(t) +
∫

S

ξ × [(Mt
∗)−1dft

ext(ξ)]

In order to relate the properties EG1) and EG2) with the abstract Newton
law, we start by defining the metric 〈, 〉 on k×SO(k; 3). This metric is induced
by the kinetic energy. Since (see (5.90))

q(t, ξ) = r(t) + h(t)Bξ and
q̇(t, ξ) = ṙ(t) + ḣ(t)Bξ,

we have
Kc(t) =

1
2

∫
S

|ṙ(t) + ḣBξ|2dm(ξ); (5.98)

We will assume that the origin 0 ∈ K coincides with the center of mass
G = 1

m(S)

∫
S

ξdm(ξ); so, we have
∫

S
ξdm(ξ) = 0, which implies

Kc(t) =
1
2
m(S)|ṙ(t)|2 +

1
2

∫
S

|ḣ(t)Bξ|2dm(ξ).

The last expression suggests the introduction of a metric on k × SO(k; 3); in
fact, given two tangent vectors (u, s), (ū, s̄) at the point (r, h) ∈ k × SO(k; 3)
one defines

〈(u, s), (ū, s̄)〉(r,h)
def= m(S)(u, ū) +

∫
S

(sBξ, s̄Bξ)dm(ξ)
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in which the right hand side defines two inner products,

〈u, ū〉r = m(S)(u, ū) and 〈s, s̄〉h =
∫

S

(sBξ, s̄Bξ)dm(ξ), (5.99)

on k and SO(k; 3), respectively. Recall that s and s̄ are tangent vectors at
h ∈ SO(k; 3). So, we have defined on SO(k; 3) a Riemannian metric which
is left invariant, that is, the left translations are isometries. In fact, given
g ∈ SO(k; 3), the left translation Lg is defined by the expression Lg(x) = gx,
for all x ∈ SO(k; 3) and, since g is a linear transformation acting on k, its
derivative satisfies dLg(x) = Lg; so one obtains

〈dLg(h)s, dLg(h)s̄〉gh = 〈gs, gs̄〉gh

=
∫

S

(gsBξ, gs̄Bξ)dm(ξ) =
∫

S

(sBξ, s̄Bξ)dm(ξ)

= 〈s, s̄〉h.

The acceleration, in the product metric, corresponding to a vector q̇ =
(ṙ, ḣ) tangent to k × SO(k; 3) at the point (r, h), is equal to

Dq̇

dt
=

D

dt
(ṙ, ḣ) = (r̈,

Dḣ

dt
).

The mass operator in the product metric acts on Dq̇

dt as

µ(
Dq̇

dt
)(u, s) = 〈r̈, u〉r + 〈Dḣ

dt
, s〉h.

Let us introduce now an abstract field of forces F : T (k × SO(k; 3)) −→
T ∗(k × SO(k; 3)) in a suitable way such that the generalized Newton law

µ(
Dq̇

dt
) = F(q̇)

becomes equivalent to the general equations EG1) and EG2), for the motion
of a rigid body. The way we define F is the following: for (ū, s̄) and w = (u, s)
in Tr,h(k × SO(k; 3)) we set:

(F(u, s))(ū, s̄) =
∫

S

(ū, dfext
w (ξ)) +

∫
S

(s̄Bξ, dfext
w (ξ)). (5.100)

Recall (see (5.94), (5.95)) the general equations:

EG1)
∫

S

q̈(t, ξ)dm(ξ) =
∫

S

dfext
t (ξ) = F ext

t

EG2)
∫

S

(q(t, ξ) − c) × q̈(t, ξ)dm(ξ) =
∫

S

(q(t, ξ) − c) × dfext
t (ξ) = P ext

t,c ,
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for all c ∈ k.
It is a simple matter to see that EG1) and EG2) are equivalent to EG1)

and EG’2), where

EG
′
2) :

∫
S

(q(t, ξ) − g(t)) × q̈(t, ξ)dm(ξ) =
∫

S

(q(t, ξ) − g(t)) × dfext
t (ξ)

= P ext
t,g(t)

with

g(t) = MtG = Mt

[
1

m(S)

∫
S

ξdm(ξ)
]

=
1

m(S)

∫
S

q(t, ξ)dm(ξ),

G being the center of mass of S, which we already set equal to the origin 0
of K. Thus we can write: ∫

S

ξdm(ξ) = 0. (5.101)

The expression of q(t, ξ) = Mt(ξ) is, in this case, q(t, ξ) = Mt(0)+M∗
t ξ =

g(t) + h(t)Bξ, with M∗
t = h(t)B. So we have

q̇(t, ξ) = ġ(t) + Ṁ∗
t ξ and q̈(t, ξ) = g̈(t) + M̈∗

t ξ,

then EG1) becomes equivalent to∫
S

g̈(t)dm(ξ) + M̈∗
t

∫
S

ξdm(ξ) = F ext
t ,

and, by (5.101), we have EG1) equivalent to

m(S)(g̈(t), ū) = (F ext
t , ū), for all ū ∈ k. (5.102)

On the other hand EG2)
′
is equivalent to

P ext
t,g(t) =

∫
S

M∗
t ξ × (g̈(t) + M̈∗

t ξ)dm(ξ)

=
(∫

S

M∗
t ξdm(ξ)

)
× g̈(t) +

∫
S

d

dt
(M∗

t ξ × Ṁ∗
t ξ)dm(ξ) =

= M∗
t

(∫
S

ξdm(ξ)
)

× g̈(t) +
d

dt

∫
S

(M∗
t ξ × Ṁ∗

t ξ)dm(ξ);

again by (5.101) EG2)
′
is equivalent to(

d

dt

∫
S

(M∗
t ξ × Ṁ∗

t ξ)dm(ξ), ū

)
= (P ext

t,g(t), ū) for all ū ∈ k.

(5.103)
From what is said in Exercise 5.6.4 there is a linear isomorphism Φ be-

tween k and the space s(k) of all linear skew-symmetric operators of k. In
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fact, for any A ∈ s(k), Φ(A) is the unique vector in k such that Av = Φ(A)×v
for all v ∈ k. With that notation, EG2)

′
being equivalent to (5.103) means

being equivalent to

(P ext
t,g(t), Φ(A)) =

d

dt

∫
S

(M∗
t ξ × Ṁ∗

t ξ, Φ(A))dm(ξ)

=
d

dt

∫
S

(Φ(A) × M∗
t ξ, Ṁ∗

t ξ)dm(ξ);

thus EG2)
′
is equivalent to

(P ext
t,g(t), Φ(A)) =

d

dt

∫
S

(AM∗
t ξ, Ṁ∗

t ξ)dm(ξ), for all A ∈ s(k). (5.104)

There is also a linear isomorphism between the tangent space ThSO(k; 3)
and s(k) (see Exercise 5.6.18 below) through the map

˙̃
h ∈ ThSO(k, 3) �−→ ˙̃

h h−1 ∈ s(k) (5.105)

(which is the derivative of the right translation Rh−1 defined as Rh−1(x) =
xh−1, for all x ∈ SO(k; 3)).

Exercise 5.6.18. Prove that ˙̃
h h−1 ∈ s(k) in (5.104) and that the map

above is a linear isomorphism.

We recall that M∗
t = h(t)B, so (5.104) and (5.105) imply that EG2)

′
is

equivalent to

(P ext
t,g(t), Φ( ˙̃

h h−1(t)) =
d

dt

∫
S

( ˙̃
h h−1(t)h(t)Bξ, ḣ(t)Bξ)dm(ξ)

=
d

dt

∫
S

( ˙̃
hBξ, ḣ(t)Bξ)dm(ξ)

for all ˙̃
h ∈ Th(t)SO(k; 3).

From (5.99), (5.102) and the last expression, one can say that EG1) and
EG2)

′
are equivalent to

(F ext
t , ū) + (P ext

t,g(t), Φ( ˙̃
h h−1(t)) =

=
d

dt

[
m(S)(ġ(t), ū) +

∫
S

( ˙̃
hBξ, ḣ(t)Bξ)dm(ξ)

]

=
d

dt
〈(ġ(t), ḣ(t)), (ū,

˙̃
h)〉

for all (ū,
˙̃
h) ∈ T(g(t),h(t)) k × SO(k; 3). (5.106)
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Notice that if we extend, by parallel transport, the vector (ū,
˙̃
h) along the

motion q(t) = (g(t), h(t)), one obtains a vector field along q(t) still denoted
by (ū,

˙̃)h so that D
dt (ū,

˙̃
h) = 0 and then the right-hand side of (5.106) can be

written as

d

dt
〈q̇, (ū,

˙̃
h)〉 = 〈Dq̇

dt
, (ū,

˙̃
h)〉 + 〈q̇, D

dt
(ū,

˙̃
h)〉 = 〈Dq̇

dt
, (ū,

˙̃
h)〉. (5.107)

Let us recall the field of forces

F : T (k × SO(k; 3)) −→ T ∗(k × SO(k; 3))

given in the following way: if (u, s) ∈ T(r,h)(k × SO(k; 3)) then we have
F(u, s) ∈ T ∗

(r,h)(k×SO(k, 3)) if, and only if (5.100) holds, that is, for (u, s) =
q̇:

(F(q̇))(ū,
˙̃
h) = (F ext

t , ū) + (P ext
t,g(t), Φ( ˙̃

hh−1(t))). (5.108)

The constructions of h−1(t), F ext
t and P ext

t,g(t) are possible because given
(r, h) ∈ k × SO(k; 3) and (u, s) ∈ T(r,h)(k × SO(k; 3)) we are able to find
q(t, ξ) and so q̇(t, ξ) that determine h−1(t), F ext

t and P ext
t,g(t). The conclusion

is then the following result:

Proposition 5.6.19. The general equations EG1) and EG2) that govern the
motions of a rigid body S (see (5.94) and (5.95)) are equivalent to the gener-
alized Newton law µ(Dq̇

dt ) = F(q̇) on the manifold k×SO(3) with the Rieman-
nian metric given by equations (5.99) and the field of forces F characterized
by (5.100).

Proof: As we saw, the equations EG1) and EG2) are equivalent to (5.106);
using (5.106) and (5.107) we see that

〈Dq̇

dt
, v〉 = [F(q̇)]v for all v ∈ Tq(t)[k × SO(k; 3)],

and so
µ(

Dq̇

dt
) = F(q̇).

We intend, now, to derive the Lagrange equations for the motion of
a rigid body S. We take a positive orthonormal basis {e1, e2, e3} for the
vector space k and denote by (r1, r2, r3) the coordinates of a vector r ∈ k.
Let (h1, h2, h3) be a local system of coordinates for SO(k; 3). So if (ū, s̄) ∈
T(r,h)(k × SO(k; 3)) we have ū = Σ3

i=1ūiei and s̄ = Σ3
i=1s̄i

∂
∂hi

(h). The force
F defined in (5.100) has the following expression in those local coordinates
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F(r, h))(ū, s̄) =
∫

S

(ū, dfext
w (ξ)) +

∫
S

(s̄Bξ, dfext
w (ξ)) =

=
3∑

i=1

ūi(ei,

∫
S

dfext
w (ξ)) +

3∑
i=1

s̄i

∫
S

(
∂

∂hi
(h)Bξ, dfext

w (ξ)) =

=
3∑

i=1

(
∫

S

dfext
w (ξ))i, dri(ū) +

3∑
i=1

(
∫

S

(
∂

∂hi
(h)Bξ, dfext

w (ξ)))dhi(s̄).(5.109)

Then if t → (r(t), h(t)) ∈ k × SO(k; 3) is a motion of S under the external
forces fext and being Kc(t) the kinetic energy along this motion, the Newton
law gives

d

dt

∂Kc

∂ṙi
− ∂Kc

∂ri
= (

∫
S

dfext
t (ξ))i, i = 1, 2, 3, (5.110)

d

dt

∂Kc

∂ḣi

− ∂Kc

∂hi
=

∫
S

(
∂

∂hi
(h)Bξ, dfext

t (ξ)), i = 1, 2, 3. (5.111)

We will relate the right hand sides of equations (5.110) and (5.111) above,
with the physical notions of total force and momentum of external forces with
respect to a point.

Since ∂
∂hi

(h)h−1(t) ∈ Te(SO(k, 3)), it follows that, for each t, there exist
vectors ωi(t) ∈ k such that

ωi(t)× =
∂

∂hi
(h)h−1(t), i = 1, 2, 3. (5.112)

This implies

d

dt

∂Kc

∂ḣi

− ∂Kc

∂hi
=

∫
S

(ωi(t) × h(t)Bξ, dfext
t (ξ)) =

= (ωi(t),
∫

S

hBξ × dfext
t (ξ)), i = 1, 2, 3. (5.113)

Introducing the usual notation F ext
t =

∫
S

dfext
t (ξ) (total force at t) and

P ext
t = P ext

t,r(t) =
∫

S
(q(t, ξ) − r(t)) × dfext

t (ξ) =
∫

S
hBξ × dfext

t (ξ) (the mo-
mentum of external forces with respect to r(t) at the time t) we obtain the
Lagrange equations for the motions of a rigid body S:

d

dt

∂Kc

∂ṙi
− ∂Kc

∂ri
= (F ext

t )i, i = 1, 2, 3 (5.114)

d

dt

∂Kc

∂ḣi

− ∂Kc

∂hi
= (ωi(t), P ext

t ), i = 1, 2, 3. (5.115)

Since Kc(t) = 1
2m(S)|ṙ|2 + 1

2

∫
S

|ḣBξ|2dm(ξ) the first Lagrange equation
gives us
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m(S)r̈(t) = F ext
t ,

and the hypothesis G = 0 implies r(t) = g(t) so we obtain the classical
Newton law for the motion of G. If the rigid body moves with a fixed point,
the second of the Lagrange equations are the only ones to be considered.

Exercise 5.6.20. Let S ⊂ K be a rigid body with fixed point O ∈ S. Assume
K = k, B = id, (O, ex, ey, ez) and (O, e1, e2, e3) orthogonal positively ori-
ented frames fixed in k and in S, respectively. If ez ×e3 �= 0, let eN = ez×e3

|ez×e3| .
The nodal line passes through O and has direction eN . The Euler angles
(ϕ, θ, ψ) are defined as follows: ϕ is the angle of rotation along the axis (0, ez)
which sends ex to eN ; θ is the angle of rotation along (0, eN ) which sends
ez to e3; ψ is the rotation along (0, e3) which sends eN to e1. Show that
to each (ϕ, θ, ψ) satisfying 0 < ϕ < 2π, 0 < ψ < 2π, 0 < θ < π, corre-
sponds a rotation R(ϕ, θ, ψ) defining local coordinates for SO(k; 3).Denote
by I1, I2, I3 the moments of inertia of S relative to (e1, e2, e3) and prove that
Ω = Ae1 + Be2 + Ce3, ω = Āex + B̄ey + C̄ez, Kc = 1

2 (I1A
2 + I2B

2 + I3C
2)

where A = ϕ̇ sin(ψ) sin(θ) + ϕ̇ cos(ψ), B = ϕ̇ cos(ψ) sin(θ) − θ̇ sin(ψ) and
C = ϕ̇ cos(θ) + ψ̇. Compute Ā, B̄ and C̄.

e z

e 3

e y

e 2

e N

θ

ψ
ϕe x

e 1

S

0

nodal line

horizontal plane

Fig. 5.4. Euler angles.
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5.7 Dynamics of pseudo-rigid bodies

The present section corresponds to Dirichlet–Riemann formulation of ellip-
soidal motions for fluid masses (also called pseudo-rigid bodies).

As in the previous section, k and K are two 3-dimensional Euclidean
vector spaces considered as affine spaces; they represent the fixed (inertial)
space and the moving space respectively.

A motion t �→ Mt is a smooth map where each Mt : K → k is an
orientation preserving affine transformation (bijection) such that takes the
zero vector O ∈ K (corresponding to the center of mass) into the zero vector
0 ∈ k.

If we fix a ball Br ⊂ K of radius r and centered in O, a motion of a
pseudo-rigid body is the motion

t �→ Mt(Br) ⊂ k

of a solid ellipsoid.
Given Mt, we call B = Mt=0 and set Qt = Mt ◦ B−1 : k → k, so

Qt ∈ GL+(k, 3). The derivative Q̇t = Ṁt ◦B−1 represents the tangent vector
at the point Qt ∈ GL+(k, 3) to the curve t �→ Qt. Take a point X ∈ Br; then
q(t, X) = MtX is a curve in k with velocity q̇(t, X) = ṀtX.

The kinetic energy of the motion of the solid ellipsoid is

Kc(t) =
1
2

∫
Br

|q̇(t, X)|2 dm(X)

where the positive measure m on K is the distribution of mass. So

Kc(t) =
1
2

∫
Br

|Q̇t ◦ BX|2 dm(X) =
1
2

∫
Br

|Q̇t ◦ BX|2 ρdV (X)

where ρ is the density and V is the Lebesgue volume. When ρ = constant,

Kc(t) =
ρ

2

∫
Br

|Q̇t ◦ BX|2 dV (X).

In order to work with matrices, we fix two positive orthonormal bases
(e1, e2, e3) and (E1, E2, E3) in k and K, respectively. For simplicity, we con-
sider the particular case in which the matrix of B is Id, the identity matrix.
We shall denote by Qt and X the corresponding matrices of Qt and X with
respect to the fixed bases. Then

Kc(t) =
ρ

2

∫
Br

|Q̇tX|2 dV (X). (5.116)

Proposition 5.7.1. Any real n × n matrix G has a (non unique) bipolar
decomposition G = LDR, that is L, R are orthogonal matrices and D =
diag (

√
σ1, . . . ,

√
σn). Moreover σ1 ≥ · · · ≥ σn ≥ 0 are the non negative

eigenvalues of GT G (GT is the transpose of G).
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Proposition 5.7.2. The matrix E0 = ρ
∫

Br
XXT dV (X) is given by E0 =

4ρπr5

15 Id = m̄Id. (Note carefully that XXT is a 3 × 3 matrix).

Proposition 5.7.3. The kinetic energy ( (5.116)) is given by

Kc(t) =
1
2
tr(Q̇t E0 Q̇T

t ).

(Here trA denotes the trace of the matrix A).

From the propositions above it follows that

Kc(t) =
1
2
m̄ tr (Q̇t Q̇T

t ). (5.117)

Exercise 5.7.4. Prove the three last propositions.

Let us assume, from now on, that m̄ = 1.

Remark 5.7.5. The expression ((5.117)) suggests the following Riemannian
metric for the group GL+(3) of all 3 × 3 matrices of positive determinant:

〈A , B 〉Q := tr (ABT ), (5.118)

for all Q ∈ GL+(3) and all A, B ∈ TQGL+(3).

Assume that a smooth motion has a (not necessarily unique) smooth
bipolar decomposition Qt = TT

t At St (i.e. three smooth paths: At diagonal,
and Tt, St orthogonal paths).

In the case when Qt is analytic, this is always possible; also, if the eigen-
values of QtQ

T
t are distinct and Qt is not analytic, the smooth decomposition

is still possible. However, there are examples of C∞ paths Qt for which there
is no continuous bipolar decomposition (see Montaldi [50], Kato [34] and
Roberts - S. Dias [57]). We have:

Proposition 5.7.6. From the equation of continuity in hydrodynamics and
ρ = constant, it follows that a smooth path Qt = Mt ◦ B−1 corresponding to
an ellipsoidal motion satisfies det Qt = 1, that is, Qt is a curve in the Lie
group SL(3).

Proof: Assume Qt = TT
t AtSt and call

x = Ttq(t, X) = TtMtX = TtQtBX

where Tt = (Tki) means a rotation that takes (e1, e2, e3) to the orthonormal

basis (ē1(t), ē2(t), ē3(t)), that is ēi(t) =
3∑

k=1

Tkiek, i = 1, 2, 3.

Then u := ẋ =
(
ṪtQt + TtQ̇t

)
BX and BX = Q−1

t TT
t x so,
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u =
(
Ṫt TT

t + TtQ̇tQ
−1
t TT

t

)
x

and div u =
∑

k

∂uk

∂xk
= tr (Q̇tQ

−1
t ) =

1
det Qt

d

dt
(detQt). Finally div u = 0 if

and only if
d

dt
(detQt) = 0 if and only if detQt = constant. Thus detQt = 1

because for t = 0 we have detQ0 = det (BB−1) = 1.

From Dirichlet–Riemann formulation (see Chandrasekhar [15] and Mon-
taldi [50]) the motions of pseudo-rigid bodies are given by a generalized New-
ton law describing a mechanical system on the configuration space GL+(3)
with a holonomic constraint defined by the submanifold SL(3) of GL+(3),
that is:

µ
DQ̇

dt
= − dV + λdf, Q ∈ SL(3). (5.119)

Here f : GL(3) → R is the determinant function and λ : TSL(3) → R

is the so-called Lagrange multiplier; also, SL(3) = f−1(1) ⊂ GL+(3) is an
analytic 8-dimensional orientable submanifold of GL+(3),

µ : TGL+(3) → T ∗GL+(3)

is the mass operator (Legendre transformation) relative to the trace metric,
µ(v)(·) := 〈v , ·〉 (see (5.118)), and DQ̇

dt is the covariant derivative of Q̇(t) (ac-
celeration) along Q(t) in that metric. The map df : TGL+(3) → T ∗GL+(3)
is given by

v �→ df(πv)

where π : TGL+(3) → GL+(3) is the canonical bundle projection. We still
denote by df its restriction to TSL(3). We will show that µ−1df : TSL(3) →
TGL+(3) satisfies d’Alembert principle. In fact for any A ∈ TSL(3) we
have

(µ−1df) A = w ∈ Tπ(A)GL+(3)

where w is such that 〈w , ·〉 =
[
dfπ(A)

]
(·), so w is orthogonal to Tπ(A)SL(3).

Then there exists a unique Lagrange multiplier λ : TSL(3) → R, yielding
the reaction force . The function

V : GL+(3) → R

is the potential energy and corresponds to the gravitational potential (see
examples below).

Proposition 5.7.7. The generalized Newton law ( (5.119)) is equivalent to
the system

Q̈ = −∂V

∂Q
+ λ

∂f

∂Q
, det Q = 1. (5.120)
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Proof: Here Q, Q̈, ∂V
∂Q , ∂f

∂Q are 3×3 matrices: Q = (qij), Q̈ = (q̈ij), ∂V
∂Q = ( ∂V

∂qij
)

and ∂f
∂Q = ( ∂f

∂qij
), respectively. We also have that (see Exercise 5.1.1):

µ

(
DQ̇

dt

)
=

∑
i,j

[
d

dt

dKc

dq̇ij
− dKc

dqij

]
dqij ,

where
Kc =

1
2
〈Q̇, Q̇〉 =

1
2

[
q̇2
11 + q̇2

12 + · · · + q̇2
33
]
.

Then

µ

(
DQ̇

dt

)
= −dV + λdf ←→

∑
ij

q̈ij dqij =
∑
ij

(
− ∂V

∂qij
+ λ

∂f

∂qij

)
dqij

and the proof is complete.

For the Dirichlet–Riemann formulation (see [15]) one considers, from the
smooth bi-polar decomposition Qt = TT

t At St, the new variables

Ω∗ := Ṫ TT Λ∗ := ṠST

which are skew symmetric paths because differentiation of TTT = SST = I
gives

Ṫ TT + T ṪT = 0 = ṠST + SṠT .

Thus we obtain:

Q̇ = TT
(
Ω∗T A + Ȧ + AΛ∗

)
S

and also, from last Proposition 5.7.7:

Q̈ = ṪT
(
Ω∗T A + Ȧ + AΛ∗

)
S + TT

(
Ω∗T A + Ȧ + AΛ∗

)
Ṡ+

+TT ÄS + TT
[

d
dt (AΛ∗ − Ω∗A)

]
S =

=
[
−∂V

∂Q + λ∂(det Q)
∂Q

]
Q=T T AS

.

So, one obtains the equation of motion:

Ä + Ω∗
(
Ω∗A − Ȧ − AΛ∗

)
+

(
−Ω∗A + Ȧ + AΛ∗

)
Λ∗ + d

dt (AΛ∗ − Ω∗A)

=
[
−T

(
∂V
∂Q

)
Q=T T AS

ST + λT
(

∂(det Q)
∂Q

)
Q=T T AS

ST

]
.

(5.121)
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Exercise 5.7.8. Show that

I. If f = detQ, Q ∈ GL+(3), then dfQ(B) = (detQ) tr(Q−1B) for any 3 × 3
real matrix B.

II. For any function φ : GL+(3) → R then ∂φ
∂Q = [ dφQ(Bij)] where Bij is

the matrix with 1 at the (ij)−entry and zero otherwise.
III. T ∂(detQ)

∂Q ST = A−1(detA) for any Q ∈ GL+(3) .

IV. If for any Q ∈ GL+(3), V (Q) = V (TT AS) = V̄ (A) depends only on
A = diag(a1, a2, a3), 0 < a1 < a2 < a3, then

T (
∂V

∂Q
)
Q=T T AS

ST =
∂V̄

∂A
.

Example 5.7.9. (Examples of potentials)
Assume that V : GL+(3) → R is of the form:

V (Q) = V̄ (I(C), II(C), III(C))

where C = QQT and I(C) = trC, II(C) = 1
2

[
(trC)2 − tr (C2)

]
, III(C) =

det C.

1. Gravitational potential

V̄ = −2πGρ

∫ ∞

0

ds

[(s3 + I(C) s2 + II(C) s + III(C)]1/2 .

2. Ciarlet-Geymonat material (see [42])

V̄ =
1
2

λ (III(C) − 1 − ln III(C)) +
1
2

µ (I(C) − 3 − ln III(C)) .

3. Saint Venant-Kirchhoff material (see [42])

V̄ =
1
2

λ (tr (C − Id))2 + µ
(
tr (C − Id)2

)
.

Remark 5.7.10. For general purposes we write:

∂V

∂Q
=

∂V̄

∂I
∂I (C)
∂Q

+
∂V̄

∂II
∂II (C)

∂Q
+

∂V̄

∂III
∂III (C)

∂Q
.

Proposition 5.7.11. (see [58])

∂I (C)
∂Q = 2Q

∂II (C)
∂Q = 2

[
Id tr (QQT ) − QQT

]
Q

∂III (C)
∂Q = 2det (QQT ) (Q−1)T .
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Remark 5.7.12. Using the expression of the gravitational potential and the
results III and IV of Exercise 5.7.8, we see that equation (5.121) is precisely
the so-called Dirichlet–Riemann equation (see [15] p.71, eq(57)), provided
that detA = 1 and λ = 2pc

ρ .

5.8 Dissipative mechanical systems

The results we will present in this section have their proofs in the article
“Dissipative Mechanical Systems”, by I. Kupka and W.M. Oliva, appeared
in Resenhas IME-USP 1993, vol. 1, no. 1, 69-115 (see [38]).

A mechanical system (Q, 〈, 〉,F), is said to be dissipative if the field of
external forces F : TQ → T ∗Q is given by

F(v) = −dV (p) + D̃(v) for all v ∈ TpQ;

where V : Q → R is a Cr+1(r ≥ 1) potential energy and D̃ ∈ C1 veri-
fies (D̃(v))v < 0 for all 0 �= v ∈ TQ. D̃ is called a dissipative external
field of forces (or simply a dissipative force) and (−dV ) is said to be the
conservative force.

Remark 5.8.1. D̃(0p) = 0 ∀p ∈ Q (0p is the zero vector of TpQ). In fact,
continuity of D̃ shows that (D̃(0p))v = limλ→0

1
λ (D̃(λv))λv ≤ 0 for λ > 0

and 0 �= v ∈ TpQ implies (D̃(0p))v = 0 (otherwise (D̃(εv))v < 0 for small
ε < 0 and then (D̃(εv))(εv) > 0 which is a contradiction).

Remark 5.8.2. The mass operator µ : TQ → T ∗Q defines D = µ−1D̃ : TQ →
TQ and (D̃(v))v < 0 is equivalent to 〈D(v), v〉 < 0 for all 0 �= v ∈ TQ.

It is usual to say that D is a dissipative force when D̃ = µD is a dissipative
force.

Let us denote by DMS the set of all vector fields X ∈ Cr(TQ, TTQ)
such that X is defined by a dissipative mechanical system, that is, by a pair
(V, D) as above. If z is a trajectory of (V, D) and q its projection on Q, then
z = dq

dt = q̇ and the motion q = q(t) satisfies the generalized Newton law

Dq̇

dt
= −(grad V )(q) + D(q̇). (5.122)

It is useful to remark that the mechanical energy Em decreases along non
trivial integral curves of any mechanical system (V, D). In fact, we have:

Ėm =
d

dt
(
1
2
〈q̇, q̇〉 + V (q(t))) = 〈Dq̇, q̇〉

which shows that Em decreases on all integral curves not reduced to
a singular point. The singular points of X lie on the zero section O(Q);
moreover 0p ∈ O(Q) is a singular point if and only if p is critical for V .
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A function V ∈ Cr+1(Q, R) is said to be a Morse function if the Hessian
of V at each critical point is a non-degenerate quadratic form. It is well known
that the set of all Morse functions is an open dense subset of Cr+1(Q, R) with
the standard Cr+1 topology.

A dissipative mechanical system (V, D) is said to be strongly dissipative
if V is a Morse function and D comes from a strongly dissipative force
that is, satisfies the following additional condition: for all p ∈ Q and all
ω �= 0, ω ∈ TpQ, one has (〈dvD(0p)ω, ω〉) < 0 where dvD denotes the vertical
differential of D.

From now on let us denote by SDMS the set of all X ∈ DMS such that
X = (V, D) is strongly dissipative and by D the set of all strongly dissipative
forces D.

Proposition 5.8.3. Let (V, D) be a strongly dissipative mechanical system.
Then the following properties hold:

i) The singular points of (V, D) are hyperbolic.
ii) The stable and unstable manifolds W s(0) and Wu(0) of a singular point

0 are properly embedded.
iii) dimWu(0) is the Morse index of V at τ(0) ∈ Q.
iv) dimWu(0) ≤ dimQ ≤ dimW s(0).

Exercise 5.8.4. Exercise 11.5 Prove property (ii) in the last proposition.

Two submanifolds S1 and S2 of a manifold M are said to be in general
position or transversal if either S1∩S2 is empty or at each point x ∈ S1∩S2
the tangent spaces TxS1 and TxS2 span the tangent space TxM .

Let us denote by SDMS(D) the set of all Cr strongly dissipative me-
chanical systems X = (V, D) with a fixed D. Analogously we introduce the
set SDMS(V ).

All the subsets of DMS are endowed with the topology induced by the
Cr-Whitney topology of Cr(TQ, TTQ).

This topology possesses the Baire property.

Proposition 5.8.5. The set of all systems X in SDMS such that their
stable and unstable manifolds are pairwise transversal is open in SDMS.

Proposition 5.8.6. Assume dimQ > 1, r > 3(1 + dim Q) and let G be
the subset of SDMS(D) (resp. SDMS(V )) of all systems X such that
their invariant manifolds are pairwise transversal. Then G is open dense in
SDMS(D) (resp. SDMS(V )).

As usual, we say that X ∈ SDMS is structurally stable if there exists
a neighborhood W of X (in the Whitney Cr-topology) and a continuous map
h from W into the set of all homeomorphisms of TQ (with the compact open
topology), such that:

1) h(X) is the identity map;
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2) h(Y ) takes orbits of X into orbits of Y , for all Y ∈ W , that is, h(Y ) is a
topological equivalence between X and Y .
If the topological equivalence h(Y ) preserves time, that is, if Xt (resp.
Yt) is the flow map of X (resp Y ) and h(Y )◦Xt = Yt ◦h(Y ) for all t ∈ R,
then we say that h(Y ) is a conjugacy between X and Y .

Recall that the subset of all complete Cr vector fields X on a manifold
M (the flow map Xt of X is defined for all t ∈ R) is open in the set of all
Cr-vector fields with the Whitney Cr-topology.

Proposition 5.8.7. Any complete strongly dissipative mechanical system
where all the stable and unstable manifolds of singular points are in general
position is structurally stable and the topological equivalence is a conjugacy.

If in the last proposition we do not assume the mechanical system to be
complete, the same arguments used in the proof also shows that the corre-
sponding time-one map flow is a Morse–Smale map in the sense presented in
[29], then stable with respect to the attractor A (V, D), which in this case is
the union of the unstable manifolds of all singular points of (V, D).

Example 5.8.8. Let us consider an example of a strongly dissipative mechan-
ical system which does not satisfy the conclusions of Proposition 5.8.6 in
the sense that it does not belong to G; it is the system which describes the
motions of a particle (unit mass) constrained to move on the surface Q of
a symmetric vertical solid torus of R

3 obtained by the rotation around the
x-axis, of a circle defined by the equations y = 0 and x2 + (z − 3)2 = 1. The
potential is proportional to the height function of Q and the dissipative force
D is given by D(v) = −cv, c > 0, for all v ∈ TQ. These data define a strongly
dissipative mechanical system with Q as the configuration space. The metric
of Q is the one induced by the usual inner product of R

3 and the potential
is a well known Morse function with four critical points. The symmetry of
the problem shows that the unstable manifold of dimension one of a saddle
is contained in the stable manifold of dimension 3 of the other saddle hence
they are not in general position since dim TQ = 4.

A dissipative force D is said to be complete if, for any Morse function
V , the vector field associated to (V, D) is complete, that is, all of its integral
curves are defined for all time.

Example 5.8.9. Let us consider a linear dissipative field of forces, that is, a
function D defined by

D(v) = −c(τ(v))v, for all v ∈ TQ

where c : Q → R is a strictly positive Cr function and Q is compact. It is a
simple matter to show that D is a strongly dissipative force. We will show that
D is complete. If it were not the case, there would exist a smooth function
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V : Q → R and a motion t → q(t) of (V, D) whose maximal interval of a
existence is ]α, +∞[ with −∞ < α < 0. We know that d

dt (Em(q̇)) = 〈D(q̇), q̇〉
is negative and also that

0 < |〈D(q̇), q̇〉| ≤ µ|q̇|2 ≤ 2µ(Em(q̇) + k)

where µ > 0 is the maximum of c on Q and k = |ν|, ν being the minimum of
V on Q. For all t, α < t < 0, we may write

−2µ(Em(q̇) + k) ≤ Ėm(q̇) ≤ d

dt
(Em(q̇) + k) < 0

or
d(Em(q̇) + k)
Em(q̇) + k

≥ −2µdt

which implies
Em(q̇) + k ≤ (Em(q̇(0)) + k)e−2µt

and then Em(q̇(t)) is bounded and strictly decreasing, so there exists

lim
t→α−

Em(q̇(t)) = L < +∞.

This shows that |q̇|2 = 2(Em(q̇) − V (q(t)) is also bounded, because V is
bounded; now it is immediate that we have a contradiction.
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