Skip to main content

Bridging gaps

  • Chapter
  • First Online:
  • 2996 Accesses

Abstract

The title of this chapter was chosen for two reasons. Solid particles can stick together by net attraction (Sect.7.1), and similarly by capillary (Sect. 7.2) or solid bridges (Sect. 7.3), this attraction enables macropores. In spite of higher skeleton pressures the limit void ratios can be higher by net attraction. The influence and evolution of particle bridges can be captured by extended constitutive models, these will but briefly be indicated as there are only few validations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso E.E., Gens A., and Josa A. A constitutive model for partially saturated soils. Géotechnique, 40(3):405–430, 1990.

    Article  Google Scholar 

  • Balthasar K., Gudehus G., Külzer M., and Libreros-Bertini A.B. Thin layer shearing of a highly plastic clay. Nonlin. Proc. Geophys., 13:671–680, 11 2006.

    Article  Google Scholar 

  • Bjerrum L. Stability of natural slopes in quick clay. Géotechnique, V(1):101–119, 3 1955.

    Article  Google Scholar 

  • Fam M. and Santamarina J.C. Coupled diffusion-fabric-flow phenomena: An effective stress analysis. Can. Geotech. J., 33:515–522, 1996.

    Article  Google Scholar 

  • Fredlund D.G. and Rahardjo H. Soil Mechanics for Unsaturated Soils. Wiley, New York, 1993.

    Google Scholar 

  • Gudehus G. and Mikulitsch V. Materialverhalten zementierter Korngerüste. Der Bauingenieur, 71:119–126, 1996.

    Google Scholar 

  • Horn R.G. Surface forces and their action in ceramic materials. J. Am. Ceram. Soc., 73(5):1117–1135, 1990.

    Article  Google Scholar 

  • Kolmogorov A.N. Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. Dokl. Akad. Nauk SSSR, 31:99–101, 1941.

    Google Scholar 

  • Lagioia R. and Nova R. An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique, 45(4):633–648, 1995.

    Article  Google Scholar 

  • Maatouk A., Leroueil S., and La Rochelle P. Yielding and critical state of a collapsible unsaturated silty soil. Géotechnique, 45(3):465–477, 1995.

    Article  Google Scholar 

  • Mašin D. and Khalili N. A hypoplastic model for mechanical response of unsaturated soils. Int. J. Numer. Anal. Methods Geomech. 32(15): 1903–1926, 2008.

    Article  Google Scholar 

  • Persson B.N.J. On the role of intertia and temperature in continuum and atomistic models of brittle fracture. J. Phys. Condens. Matter, 10:10529–10538, 1998.

    Article  Google Scholar 

  • Richter S. and Huber G. Time-dependent behavior of fine-grained model material in resonant column experiments. Granular Matter, 6(4):195–206, 2004.

    Google Scholar 

  • Ridley A.M., Dineen K., Burland J.B., and Vaughan P.R. Soil matrix suction: some examples of its measurement and application in geotechnical engineering. Géotechnique, 53(2):241–253, 2003.

    Google Scholar 

  • Sridharan A. and Venkatappa Rao G. Effective stress theory of shrinkage phenomena. Canad. Geotech. J., 8(4):503–513, 1971.

    Article  Google Scholar 

  • Sun D., Sheng D., and Xu Y. Collapse behaviour of unsaturated compacted soil with different initial densities. Can. Geotech. J., 44:673–686, 2007.

    Article  Google Scholar 

  • Wheeler S.J. A conceptual model for soils containing large gas bubbles. Géotechnique, 38:389–397, 1988.

    Article  Google Scholar 

  • Gudehus G. A comprehensive concept for non-saturated granular bodies. In Proceeding of the 1st Internation Conference on Soil Mechanics on Unsaturated Soils, pages 725–737, Paris, 1995.

    Google Scholar 

  • Mikulitsch V. and Gudehus G. Uniaxial tension, biaxial loading and wetting tests on loess. In E.E. Alonso & P. Delage editors, Proceedings of the 1st International Conference on Unsaturated Soils, Paris 1995. Volume 1, pages. 145–150, 1995.

    Google Scholar 

  • Pralle N. Mechanisms in Nearly Saturated Sandy Soils Under Quasi-static and Dynamic Loading. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 158, 2002.

    Google Scholar 

  • Richter S. Mechanical Behavior of Fine-Grained Model Materials During Cyclic Shearing. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 167, 2006.

    Google Scholar 

  • Schünemann A. Numerische Modelle zur Beschreibung des Langzeitverhaltens von Eisenbahnschotter unter alternierender Beanspruchung. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 168, 2006.

    Google Scholar 

  • Winter H. Fliessen von Tonböden: Eine mathematische Theorie und ihre Anwendung auf den Fliesswiderstand von Pfählen. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 82, 1979.

    Google Scholar 

  • Zou Y. Der Einfluss des gebundenen Wassers auf die Leitfähigkeit und die mechanischen Eigenschaften feinkörniger Böden. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 144, 1998.

    Google Scholar 

  • Külzer M. State Limits of Peloids. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University Karlsruhe, 2010, under preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Bridging gaps. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_7

Download citation

Publish with us

Policies and ethics