Skip to main content

Introduction

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

Ever since continuum approaches for soils were questioned as far as these are visibly particulate matter. One may be tempted to simulate granular aggregates grain by grain with a computer in order to understand their mechanical properties. On the other hand, engineers are inclined to take over continuum models from solids to soils, so they work with notions like stiffness and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Marroquin F. and Herrmann H.J. Ratcheting of granular materials. Phys. Rev. Lett., 92(5):054301, 2004.

    Article  Google Scholar 

  • Bak P., Tang C., and Wiesenfeld K. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987.

    Article  MathSciNet  Google Scholar 

  • Bogdanova-Bontcheva N. and Lippmann H. Rotationssymmetrisches ebenes Fliessen eines granularen Modellmaterials. Acta Mech., 21:93–113, 1975.

    Article  Google Scholar 

  • D’Addetta G.A., Ramm E., Diebels S., and Ehlers W. A particle center based homogenization strategy for granular assemblies. Eng. Computations, 21(2/3):360–383, 2004.

    Article  MATH  Google Scholar 

  • Hidalgo R.C, Grosse C.U., Kun F., Reinhardt H.W., and Herrmann H.J. Evolution of percolating force chains in compressed granular media. Phys. Rev. Let., 89, 10 2001.

    Google Scholar 

  • Jaeger H.M., Nagel S.R., and Behringer R.P. Granular solids, liquids, and gases. Rev. Modern Phys., 68(4):1259–1273, 10 1996.

    Article  Google Scholar 

  • Johnson K.L. Contact Mechanics. Cambridge University Press, Cambridge, MA, 1985.

    MATH  Google Scholar 

  • Kadanoff L.P. Chaos and Complexity: The Results of Non-linear Processes in the Physical World, volume 57, pages 127–139. Springer, Berlin etc., 1991.

    Google Scholar 

  • Kondic L. and Behringer R.P. Elastic energy, fluctuations and temperature for granular materials. Europhys. Lett., 67(2):205–211, 2004.

    Article  Google Scholar 

  • Mohr O. Abhandlungen aus dem Gebiete der Technischen Mechanik. Ernst und Sohn, Berlin, 2 edition. 1914.

    Google Scholar 

  • Pena A.A., Lizcano A., Alonso-Marroquin F., and Herrmann H.J. Biaxial test simulations using a packing of polygonal particles. Int. J. Numer. Anal. Meth. Geomech., 1145:1–12, 2006.

    Google Scholar 

  • Tillemans H.-J. and Herrmann H.J. Simulating deformations of granular solids under shear. Physica A, 217:261–288, 1995.

    Article  Google Scholar 

  • Coulomb M. Essai sur une application des regles des Maximis et Minimis a quelques Problemes de Statique, relatifs a l’Architecture. Editions Science et Industrie, Paris, 1773. reprint 1971.

    Google Scholar 

  • Cundall P.A., Drescher A., and Strack O.D.L. Numerical experiments on granular assemblies; measurements and observations. In IUTAM Conf. Deformation and Failure of Granular Materials, pages 355–370. Delft, 1982.

    Google Scholar 

  • Darwin G.H. On the horizontal thrust of a mass of sand. In Minutes of the Proceedings Instituation of Civil Engineering, pages 350–378. 1883.

    Google Scholar 

  • Gudehus G. Lower and upper bounds for stability of earth-retaining structures. Proceedings of the 5th European Conference on Soil Mechanics and Foundation Engineering, 1:21–28, 1972.

    Google Scholar 

  • Koiter W.T. General theorems for plastic solids. Prog. Solid Mech., 165, 1958.

    Google Scholar 

  • Radjai F., Wolf D.E., Jean, M., Roux, S., and Moreau J.J. Force networks in dense granular media. In Powder and Grains 97, 1996.

    Google Scholar 

  • Thornton C. and Sun G. Numerical simulation of general 3D quasi-static shear deformation of granular media. In I.M. Smith, editor, Numerical Methods in Geotechnical Engineering, pages 143–148. 1994.

    Google Scholar 

  • Dantu P. A contribution to the mechanical and geometrical study of non-cohesive masses. In Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, volume 1, pages 144–157. 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Introduction. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_1

Download citation

Publish with us

Policies and ethics