Skip to main content

Biosensors for Aquatic Toxicology Evaluation

  • Chapter

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5J))

There is an increasing need for effective tools to estimate the risks derived from the large number of pollutants released to the environment by human activities. These studies need the combination of chemical analysis and ecotoxicological evaluation. Environmental toxicology is the qualitative and quantitative study of the adverse effects of anthropogenic and naturally occurring chemical stressors.

Initial aquatic ecotoxicology studies were based on acute toxicity measurements of vertebrates. However, these methods suffer some standardization problems, are expensive, time-consuming, and moreover, are associated with ethical problems. For this reason new technologies for ecotoxicological studies, such as embryo tests, micro invertebrates, algae, micro organisms, cell lines and tissues, biochemical reactions and nucleic acids, were launched.

Biological tools like bio-analytical systems, bioassays, biomarkers and biosensors provide us with detection systems for signalling a potential damage in the environment. Early recognition will prevent eventual damage to environmental matrices. Ideally, early warning signals in ecosystems using sensing systems (biosensors) and biochemical responses (biomarkers) as well as the classical effect-related bioassays would not only tell us the initial levels of damage, but these signals will also provide us with answers for the development of control strategies and precautionary measures.

Herein new trends in ecotoxicity assessment will be reviewed with special emphasis on principles, advantages and limitations of biosensors for environmental toxicology assessment in the aquatic environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carson R (2008) Silent spring. (First edition 1962)

    Google Scholar 

  2. Farre M, Barcelo D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22:299–310

    CAS  Google Scholar 

  3. Munkittrick KR, McMaster ME, McCarthy LH, Servos MR, Van Der Kraak GJ (1998) An overview of recent studies on the potential of pulp-mill effluents to alter reproductive parameters in fish. J Toxicol Environ Health B Crit Rev 1:347–371

    CAS  Google Scholar 

  4. Solomon KR, Baker DB, Richards RP, Dixon KR, Klaine SJ, La Point TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, Hall J, Williams WM (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    CAS  Google Scholar 

  5. Hansen PD (2008) Biosensors and ecotoxicology. Eng Life Sci 8:26–31

    CAS  Google Scholar 

  6. Tothill IE, Turner APF (1996) Developments in bioassay methods for toxicity testing in water treatment. Trends Anal Chem 15:178–188

    CAS  Google Scholar 

  7. Landrigan PJ (2001) Pesticides and polychlorinated biphenyls (PCBs): an analysis of the evidence that they impair children's neurobehavioral development. Mol Genet Metab 73: 11 – 17

    CAS  Google Scholar 

  8. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (2000) Offic J Eur Commun L327:73

    Google Scholar 

  9. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407

    CAS  Google Scholar 

  10. Brack W, Schmitt-Jansen M, MacHala M, Brix R, Barcelo D, Schymanski E, Streck G, Schulze T (2008) How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 390:1959–1973

    CAS  Google Scholar 

  11. Burgess RM (2000) Characterizing and identifying toxicants in marine waters: a review of marine toxicity identification evaluations (TIEs). Int J Environ Pollut 13:2–33

    CAS  Google Scholar 

  12. Hewitt LM, Marvin CH (2005) Analytical methods in environmental effects-directed investigations of effluents. Mutat Res Rev Mutat Res 589:208–232

    CAS  Google Scholar 

  13. Schuetzle D, Lewtas J (1986) Anal Chem 58

    Google Scholar 

  14. Rodriguez-Mozaz S, Lopez De Alda MJ, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    CAS  Google Scholar 

  15. ISO (2008) Water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea), ISO 6341. International Standardization Organization, Geneva, Switzerland, 1996

    Google Scholar 

  16. ISO (2008) Water quality: marine algal growth inhibition tests with Skeletonema costatum and phaeodactylum tricornutum, ISO 10253. International Standardization Organization, Geneva, 1995

    Google Scholar 

  17. EPA (2008) The Selenastrum capricornutum Prinzt algal assay bottle test Experimental design, application and data interpretation protocol, EPA-600/9-78-018, Environmental Protection Agency, Corvallis, Oregon, USA, 1978. Second US/USSR symposium: biological aspects of pollutants effects on marine organisms, EPA-600/3-82-034. Environmental Protection Agency, Corvallis, Oregon, USA, 1982, pp 112–122

    Google Scholar 

  18. ISO 2008 Water quality: determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test), ISO 11348-1, 2 and 3, International Standardization Organization, Geneva, Switzerland, 1998

    Google Scholar 

  19. Biesinger KE, Christensen GM (1972) J Fish Res Board Can 29:1691–1700

    CAS  Google Scholar 

  20. Kimerle RA (1986) Managing uncertainty and margins of safety for aquatic organisms. Environmental Science and Technology 5:113–115

    Google Scholar 

  21. Versteeg DJ, Stalmans M, Dyer SD, Janssen C (1997) Ceriodaphnia and daphnia: A comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere 34:869–892

    CAS  Google Scholar 

  22. OECD Environmental Health and Safety Publication. Series on Testing and Assessment No. 6 Report of the Final Ring Test of the Daphnia magna Reproduction Test. Paris 1997

    Google Scholar 

  23. Toussaint MW, Shedd TR, Van der Schalie WH, Leather GR (1995) A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ Toxicol Chem 14:907–915

    CAS  Google Scholar 

  24. Barata C, Baird DJ, Nogueira AJA, Soares AMVM, Riva MC (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78:1–14

    CAS  Google Scholar 

  25. Duquesne S (2006) Effects of an organophosphate on Daphnia magna at suborganismal and organismal levels: Implications for population dynamics. Ecotoxicol Environ Saf 65: 145 – 150

    CAS  Google Scholar 

  26. Ikenaka Y, Eun H, Ishizaka M, Miyabara Y (2006) Metabolism of pyrene by aquatic crustacean, Daphnia magna. Aquat Toxicol 80:158–165

    CAS  Google Scholar 

  27. Hodges G, Roberts DW, Marshall SJ, Dearden JC (2006a) Defining the toxic mode of action of ester sulphonates using the joint toxicity of mixtures. Chemosphere 64:17–25

    CAS  Google Scholar 

  28. Hodges G, Roberts DW, Marshall SJ, Dearden JC (2006b) The aquatic toxicity of anionic surfactants to Daphnia magna -A comparative QSAR study of linear alkylbenzene sulphonates and ester sulphonates. Chemosphere 63:1443–1450

    CAS  Google Scholar 

  29. DeLorenzo ME, Serrano L (2006) Mixture toxicity of the antifouling compound irgarol to the marine phytoplankton species Dunaliella tertiolecta. J Environ Sci Health B Pesticides Food Contamin Agric Wastes 41:1349–1360

    CAS  Google Scholar 

  30. Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifoul-ing biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85:184–191

    CAS  Google Scholar 

  31. Lim CY, Yoo YH, Sidharthan M, Ma CW, Bang IC, Kim JM, Lee KS, Park NS, Shin HW (2006) Effects of copper (I) oxide on growth and biochemical compositions of two marine microalgae. J Environ Biol 27:461–466

    CAS  Google Scholar 

  32. Hernando MD, Fernandez-Alba AR, Tauler R, and Barcelo D (2005) Toxicity assays applied to wastewater treatment. Talanta 65:358–366

    CAS  Google Scholar 

  33. W.F.Serat, FEBPKM (1965) J Bacteriol 832–833

    Google Scholar 

  34. BulichAA (2008a) Use of luminescent bacteria for determining toxicity in aquatic environments. In Markings LL, Kimerle RA (eds) Aquatic toxicology, ASTM 667. American Society for Testing and Materials, Philadelphia, PA, pp 98–106

    Google Scholar 

  35. Farre M, Asperger D, Kantiani L, Gonzalez S, Petrovic M, Barcelo D (2008) Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the biolumines-cence inhibition of Vibrio fischeri. Anal Bioanal Chem 390:1999–2007

    CAS  Google Scholar 

  36. Farre M, Fernandez J, Paez M, Granada L, Barba L, Gutierrez HM, Pulgarin C, Barcelo D (2002) Analysis and toxicity of methomyl and ametryn after biodegradation. Anal Bioanal Chem 373:704–709

    CAS  Google Scholar 

  37. Farre M, Gonzalves C, Lacorte S, Barcelo D, Alpendurada MF (2002b) Pesticide toxicity assessment using an electrochemical biosensor with Pseudomonas putida and a biolumines-cence inhibition assay with Vibrio fischeri. Anal Bioanal Chem 373:696–703

    CAS  Google Scholar 

  38. Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17:526–538

    CAS  Google Scholar 

  39. Mortimer M, Kasemets K, Heinlaan M, Kurvet I, Kahru A High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicol In vitro 22:1412–1417

    Google Scholar 

  40. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    CAS  Google Scholar 

  41. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM (2008) Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. J Environ Monit 10:622–631

    CAS  Google Scholar 

  42. Farre M, Garcia M-J, Castillo M, Riu J, Barcelo D (2001) Identification of surfactant degradation products as toxic organic compounds present in sewage sludge. J Environ Monit 3:232–237

    Google Scholar 

  43. Farre M, Kloter G, Petrovic M, Alonso MC, Lopez de Alda MJL, Barcelo D (2002) Identification of toxic compounds in wastewater treatment plants during a field experiment. Anal Chim Acta 456:19–30

    CAS  Google Scholar 

  44. Hernando MD, De Vettori S, Martinez Bueno MJ, Fernandez-Alba AR (2007) Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 68: 724–730

    CAS  Google Scholar 

  45. Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems.

    Google Scholar 

  46. da Silva Nunes-Halldorson V, Duran NL (2003) Braz J Microbiol 34:91

    Google Scholar 

  47. Ren S, Frymier PD (2002) Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge. Water Res 36:4406–4414

    CAS  Google Scholar 

  48. Sagi E, Hever N, Rosen R, Bartolone AJ, Premkumar JR, Ulber R, Lev O, Scheper T, and Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuators B Chem 90:2–8

    Google Scholar 

  49. Davidov Y, Rozen R, Smulski DR, Van Dyk TK, Vollmer AC, Elsemore DA, LaRossa RA, Belkin S (2000) Improved bacterial SOS promoter::lux fusions for genotoxicity detection. Mutat Res Genet Toxicol Environ Mutagen 466:97–107

    CAS  Google Scholar 

  50. Kelana LC, Griffiths MW (2003) Growth of autobioluminescent Campylobacter jejuni in response to various environmental conditions. J Food Prot 66:1190–1197

    Google Scholar 

  51. Yamagata T, Ishii M, Narita M, Huang GC, Endo G (2002) Bio-affecting mercury detection using mercury resistance gene module fused with bioluminescence reporter genes. Water Sci Technol 46:253–256

    CAS  Google Scholar 

  52. Ames BN (2008) FDLWEDPNASU717

    Google Scholar 

  53. AndersonD,BishopJB, GarnerRC,Ostrosky-WegmanP,SelbyPB(1995)Cyclophosphamide: Review of its mutagenicity for an assessment of potential germ cell risks. Mutat Res Fundam Mol Mech Mutagen 330:115–181

    CAS  Google Scholar 

  54. Ischenko AA, Saparbaev MK (2002) Alternative nucleotide incision repair pathway for oxida-tive DNA damage. Nature 415:183–187

    Google Scholar 

  55. Longhese MP, Clerici M, Lucchini G (2003) The S-phase checkpoint and its regulation in Saccharomyces cerevisiae. Mutat Res Fundam Mol Mech Mutagen 532:41–58

    CAS  Google Scholar 

  56. Magdaleno A, Mendelson A, de Iorio AF, Rendina A, Moretton J Genotoxicity of leachates from highly polluted lowland river sediments destined for disposal in landfill. Waste Manage 28:2134–2139

    Google Scholar 

  57. Lee JW, Helmann JD (2006) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367

    CAS  Google Scholar 

  58. Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J (2005) Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58:1249–1253

    CAS  Google Scholar 

  59. Matsui M, Matsui K, Kawasaki Y, Oda Y, Noguchi T, Kitagawa Y, Sawada M, Hayashi M, Nohmi T, Yoshihira K, Ishidate J, Sofuni T (1996) Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis 11:573–579

    CAS  Google Scholar 

  60. Muzio HE, Magdaleno A, Moretton J (2005) Genotoxicity of radiographic photofilm wastewater: influence of the treatment with a metal exchange unit. Bull Environ Contamin Toxicol 74:86–93

    CAS  Google Scholar 

  61. Schafer B, Neffgen A, Klinner U (2008) A novel yeast-based tool to detect mutagenic and recombinogenic effects simultaneously. Mutat Res Genet Toxicol Environ Mutagen 652:20–29

    CAS  Google Scholar 

  62. Flegrova Z, Bartos T, Cupr P, Skarek M (2008) Sensitivity analysis of RecA genotoxicity test. Ann Microbiol 58:1–5

    CAS  Google Scholar 

  63. Moreau P, ABRD (1976) Proc Natl Acad Sci U S A 3700

    Google Scholar 

  64. Kitano M, Mizuhashi F, Kubo H, Kishida H, Fujii K, Kitahara M, Hosoe K (2007) Evaluation of the mutagenic and genotoxic potential of ubiquinol. Int J Toxicol 26:533–544

    CAS  Google Scholar 

  65. Shen Y, West C, Hutchins SR (2000) In vitro cytotoxicity of aromatic aerobic biotransformation products in bluegill sunfish BF-2 cells. Ecotoxicol Environ Saf 45:27–32

    CAS  Google Scholar 

  66. Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46:945–951

    CAS  Google Scholar 

  67. Kammann U, Bunke M, Steinhart H, Theobald N (2001) A permanent fish cell line (EPC) for genotoxicity testing of marine sediments with the comet assay. Mutat Res Genet Toxicol Environ Mutagen 498:67–77

    CAS  Google Scholar 

  68. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    CAS  Google Scholar 

  69. Colborn T, Vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    CAS  Google Scholar 

  70. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    CAS  Google Scholar 

  71. Spengler P, Kórner W, Metzger JW (2001) Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 1. Chemical analysis. Environ Toxicol Chem 20:2133–2141

    CAS  Google Scholar 

  72. Seifert M (2004) Luminescent enzyme-linked receptor assay for estrogenic compounds. Anal Bioanal Chem 378:684–687

    CAS  Google Scholar 

  73. García-Reyero N, Grau E, Castillo M, De Alda MJL, Barcelo D, Piña B (2001) Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20:1152–1158

    Google Scholar 

  74. Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioac-cumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387

    CAS  Google Scholar 

  75. Colomb A, Yassaa N, Williams J, Peeken I, Lochte K (2008) Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J Environ Monitor 10:325–330

    CAS  Google Scholar 

  76. Paixao SM, Silva L, Fernandes A, O'Rourke K, Mendonca E, Picado A (2008) Performance of a miniaturized algal bioassay in phytotoxicity screening. Ecotoxicology 17:165–171

    CAS  Google Scholar 

  77. DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE, Winder VL, Zdankiewicz DL (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23:224–232

    CAS  Google Scholar 

  78. Mecozzi M, Onorati F, Oteri F, Sarni A (2008) Characterisation of a bioassay using the marine alga Dunaliella tertiolecta associated with spectroscopic (visible and infrared) detection. Int J Environ Pollut 32:104–120

    CAS  Google Scholar 

  79. Macedo RS, Lombardi AT, Omachi CY, rig LR (2008) Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum Toxicol In vitro 22: 716–722

    CAS  Google Scholar 

  80. Zhang AQ, Leung KMY, Kwok KWH, Bao VWW, Lam MHW (2008) Toxicities of antifoul-ing biocide Irgarol 1051 and its major degraded product to marine primary producers. Mar Pollut Bull 57:575–586

    CAS  Google Scholar 

  81. Barata C, Damasio J, pez MA, Kuster M, DeAlda ML, Barceló D, Riva MC, Raldúa D (2007) Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ Toxicol Chem 26:370–379

    CAS  Google Scholar 

  82. Kim BC, Park KS, Kim SD, Gu MB (2003) Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay. Biosens Bioelectron 18:821–826

    CAS  Google Scholar 

  83. Rosa E, Barata C, sio J, Bosch MP, Guerrero A (2006) Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus. Aquat Toxicol 79:296–303

    CAS  Google Scholar 

  84. Barbosa IR Nogueira AJA Soares AMVM (2008) Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna. Ecotoxicol Environ Saf (E pub ahead of print)

    Google Scholar 

  85. Bianchini A, Wood CM (2008) Does sulfide or water hardness protect against chronic silver toxicity in Daphnia magna? A critical assessment of the acute-to-chronic toxicity ratio for silver. Ecotoxicol Environ Saf 71:32–40

    CAS  Google Scholar 

  86. Cropek DM, Esarey JC, Conner CL, Goran JM, Smith T, Soucek DJ (2008) Toxicological effects of military fog oil obscurant on Daphnia magna and Ceriodaphnia dubia in field and laboratory exposures. Ecotoxicology 17:517–525

    CAS  Google Scholar 

  87. Hermens J, Canton H, Janssen P, De Jong R (1984) Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: Acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154

    CAS  Google Scholar 

  88. LeBlanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ Contam Toxicol 24:684–691

    Google Scholar 

  89. Ingle T, Alexander R, Hannigan R, Buchanan R, Bouldin J (2007)Detection, measurement and toxicology of semiconductor nanocrystals in Ceriodapnia dubia. Proceedings of NSTI Nanotechnology, Santa Clara, CA, pp 612615

    Google Scholar 

  90. Farre M, Asperger D, Kantiani L, Gonzalez S, Petrovic M, Barcelo D (2007) Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the biolumines-cence inhibition of Vibrio fischeri. Anal Bioanal Chem 390:1999–2007

    Google Scholar 

  91. Farre M, Martinez E, Hernando MD, Fernandez-Alba A, Fritz J, Unruh E, Mihail O, Sakkas V, Morbey A, Albanis T, Brito F, Hansen PD, Barcelo D (2006) European ring exercise on water toxicity using different bioluminescence inhibition tests based on Vibrio fischeri, in support to the implementation of the water framework directive. Talanta 69: 323 – 333

    CAS  Google Scholar 

  92. Chang CT, Chen BY (2008) Toxicity assessment of volatile organic compounds and polycy-clic aromatic hydrocarbons in motorcycle exhaust. J Hazard Mater 153:1262–1269

    CAS  Google Scholar 

  93. Farre M, Pasini O, Carmen Alonso M, Castillo M, Barcelo D (2001) Toxicity assessment of organic pollution in wastewaters using a bacterial biosensor. Anal Chim Acta 426:155–165

    CAS  Google Scholar 

  94. Gomes De Moraes S, Sanches Freire R, Duran N (2000) Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere 40:369–373

    Google Scholar 

  95. Hurst JK, Lymar SV (1997) Toxicity of peroxynitrite and related reactive nitrogen species toward Escherichia coli. Chem Res Toxicol 10:802–810

    CAS  Google Scholar 

  96. Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J, Lehtokari M (2000) A battery of toxicity tests as indicators of decontamination in composting oily waste. Ecotoxicol Environ Saf 47:156–166

    CAS  Google Scholar 

  97. Mekki A, Dhouib A, Feki F, Sayadi S (2008) Assessment of toxicity of the untreated and treated olive mill wastewaters and soil irrigated by using microbiotests. Ecotoxicol Environ Saf 69:488–495

    CAS  Google Scholar 

  98. Erlenkaemper B, Bugiel C, Brecher C, Werth S, Eisentraeger A (2008) Environmental assessment of ester-based lubricants after application. Environ Sci Pollut Res Int 15:68–74

    CAS  Google Scholar 

  99. Hahn D, Cozzolino A, Piccolo A, Armenante PM (2007) Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst. Ecotoxicol Environ Saf 66:335–342

    CAS  Google Scholar 

  100. Sutterlin H, Alexy R, Summerer K (2008) The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida. Ecotoxicol Environ Saf 71:498–505

    CAS  Google Scholar 

  101. Paton GI, Viventsova E, Kumpene J, Wilson MJ, Weitz HJ, Dawson JJC (2006) An ecotox-icity assessment of contaminated forest soils from the Kola Peninsula. Sci Total Environ 355:106–117

    CAS  Google Scholar 

  102. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ Sci Technol 40:4360–4366

    CAS  Google Scholar 

  103. Ogawa T, Shibata M, Yatome C, Idaka E (1988) Growth inhibition of Bacillus subtilis by basic dyes. Bull Environ Contamin Toxicol 40:545–552

    CAS  Google Scholar 

  104. Rasmussen JP, Cursaro M, Froscio SM, Saint CP (2008) An examination of the antibiotic effects of cylindrospermopsin on common gram-positive and gram-negative bacteria and the protozoan Naegleria lovaniensis. Environ Toxicol 23:36–43

    CAS  Google Scholar 

  105. Takigami H, Taniguchi N, Shimizu Y, Matsui S (1998) Toxicity assays and their evaluation on organic polymer flocculants used for municipal sludge dewatering. Water Sci Technol 38:207–215

    CAS  Google Scholar 

  106. Cardenas S, Valcarcel M (2005) Analytical features in qualitative analysis. Trends Anal Chem 24:477–487

    CAS  Google Scholar 

  107. Farre M, Martinez E, Barcelo D (2007) Validation of interlaboratory studies on toxicity in water samples. Trends Anal Chem 26:283–292

    CAS  Google Scholar 

  108. Ramanathan K, Danielsson B (2001) Biosens Bioelectron 16:417–423

    CAS  Google Scholar 

  109. Borrebaeck C, Mattiasson B (1979) Recent developments in heterogeneous enzyme immu-noassay. J Solid Phase Biochem 4:57–67

    CAS  Google Scholar 

  110. Clarck LC (2008) CLANYAS112

    Google Scholar 

  111. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremed J 3:1–25

    CAS  Google Scholar 

  112. Nistor C, Emneus J, Gorton L, Ciucu A (1999) Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Anal Chim Acta 387:309–326

    CAS  Google Scholar 

  113. Teke M, rk MK, kaya E, Telefoncu A (2008) Two biosensors for phenolic compounds based on mushroom (Agaricus bisporus) homogenate: Comparison in terms of some important parameters of the biosensors. Prep Biochem Biotechnol 38:51–60

    CAS  Google Scholar 

  114. Yuan J, Guo W, Wang E (2008) Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80:1141–1145

    CAS  Google Scholar 

  115. Zejli H, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Liu B, Temsamani KR, Marty JL (2008) Phenol biosensor based on Sonogel-Carbon transducer with tyrosinase alumina sol-gel immobilization. Anal Chim Acta 612:198–203

    CAS  Google Scholar 

  116. Cortina M, Del Valle M, Marty JL (2008) Electronic tongue using an enzyme inhibition biosensor array for the resolution of pesticide mixtures. Electroanalysis 20:54–60

    CAS  Google Scholar 

  117. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–618

    CAS  Google Scholar 

  118. Mionetto N, Marty JL, Karube I (1994) Acetylcholinesterase in organic solvents for the detection of pesticides: biosensor application. Biosens Bioelectron 9:463–470

    CAS  Google Scholar 

  119. Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR (2001) Biosensors for direct determination of organophosphate pesticides. Biosens Bioelectron 16:225–230

    CAS  Google Scholar 

  120. Palchetti I, Cagnini A, Del Carlo M, Coppi C, Mascini M, Turner APF (1997) Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal Chim Acta 337:315–321

    CAS  Google Scholar 

  121. Skladal P, Mascini M (1992) Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholineste-rases. Biosens Bioelectron 7:335–343

    CAS  Google Scholar 

  122. Valdés-Ramírez, Fournier D, Ramírez-Silva MT, Marty JL (2008) Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin. Talanta 74:741–746

    Google Scholar 

  123. Wang Z, Wilkop T, Xu D, Dong Y, Ma G, Cheng Q (2007) Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips. Anal Bioanal Chem 389:819–825

    CAS  Google Scholar 

  124. Ng JH, Ilag LL (2003) Biochips beyond DNA: technologies and applications. Biotechnol Annu Rev 9:1–149

    CAS  Google Scholar 

  125. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    CAS  Google Scholar 

  126. Makhaeva GF, Sigolaeva LV, Zhuravleva LV, Eremenko AV, Kurochkin IN, Malygin VV, Richardson RJ (2003) Biosensor detection of neuropathy target esterase in whole blood as a biomarker of exposure to neuropathic organophosphorus compounds. J Toxicol Environ Health A 66:599–610

    CAS  Google Scholar 

  127. Du D, Chen S, Cai J, Zhang A (2008) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta 74: 766 – 772

    CAS  Google Scholar 

  128. Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sens Actuators B Chem 127:531–535

    Google Scholar 

  129. Shulga O, Kirchhoff JR (2007) An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochem Commun 9:935–940

    CAS  Google Scholar 

  130. Choi JW, Kim YK, Lee IH, Min J, Lee WH (2001) Optical organophosphorus biosensor consisting of acetylcholinesterase/viologen hetero Langmuir-Blodgett film. Biosens Bioelectron 16:937–943

    CAS  Google Scholar 

  131. Doong RA, Tsai HC (2001) Immobilization and characterization of sol-gel-encapsulated acetylcholinesterase fiber-optic biosensor. Anal Chim Acta 434:239–246

    CAS  Google Scholar 

  132. Choi CK, Margraves C, English AE, Kihm KD (2007) Opto-electric biosensor to examine in vitro toxicity stimuli to endothelial cell motility and morphology. Proceedings of the ASME Summer Bioengineering Conference, SBC, pp. 61–62

    Google Scholar 

  133. Oosterkamp AJ, Hock B, Seifert M, Irth H (1997) Novel monitoring strategies for xenoes-trogens. Trends Anal Chem 16:544–553

    CAS  Google Scholar 

  134. Kroeger S, Piletsky S, Turner APF (2002) Biosensors for marine pollution research, monitoring and control. Mar Pollut Bull 45:24–34

    Google Scholar 

  135. Dutta P, Hill K, Datskos PG, Sepaniak MJ (2007) Development of a nanomechanical biosensor for analysis of endocrine disrupting chemicals. Lab on a Chip Miniatur Chem Biol 7:1184–1191

    CAS  Google Scholar 

  136. Andres SA, Kerr DA 2nd, Bumpus SB, Kruer TL, Thieman JW, Smolenkova IA, Wittliff JL (2008) A three-tiered approach for calibration of a biosensor to detect estrogen mimics. Adv Exp Med Biol 614:305–313

    Google Scholar 

  137. Bovee TFH, Lommerse JPM, Peijnenburg AACM, Fernandes EA, Nielen MWF (2008) A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches. J Steroid Biochem Mol Biol 108:121–131

    CAS  Google Scholar 

  138. Wozei E, Hermanowicz SW, Holman HYN (2006) Developing a biosensor for estrogens in water samples: Study of the real-time response of live cells of the estrogen-sensitive yeast strain RMY/ER-ERE using fluorescence microscopy. Biosens Bioelectron 21:1654–1658

    CAS  Google Scholar 

  139. Ramakrishnan A, Tan Y, Sadana A (2005) A kinetic study of analyte-receptor binding and dissociation for surface plasmon resonance biosensors applications. IEEE Sens J 5:356–364

    CAS  Google Scholar 

  140. Muddana SS, Peterson BR (2003) Fluorescent cellular sensors of steroid receptor ligands. ChemBioChem 4:848–855

    CAS  Google Scholar 

  141. Butala HD, Sadana A (2003) A fractal analysis of analyte-estrogen receptor binding and dissociation kinetics using biosensors: environmental effects. J Colloid Interf Sci 263:420–431

    CAS  Google Scholar 

  142. Murata M, Nakayama M, Irie H, Yakabe K, Fukuma K, Katayama Y, Maeda M (2001) Novel biosensor for the rapid measurement of estrogen based on a ligand-receptor interaction. Anal Sci 17:387–390

    CAS  Google Scholar 

  143. Usami M, Mitsunaga K, Ohno Y (2002) Estrogen receptor binding assay of chemicals with a surface plasmon resonance biosensor. J Steroid Biochem Mol Biol 81:47–55

    CAS  Google Scholar 

  144. Hock B, Seifert M, Kramer K (2002) Biosens Bioelectron 17:239–249

    CAS  Google Scholar 

  145. Seifert M, Haindl S, Hock B (1999) Development of an enzyme linked receptor assay (ELRA) for estrogens and xenoestrogens. Anal Chim Acta 386:191–199

    CAS  Google Scholar 

  146. Sesay AM, Cullen DC (2001) Detection of hormone mimics in water using a miniturised SPR sensor. Environ Monitor Assess 70:83–92

    CAS  Google Scholar 

  147. Wittliff JL, Andres SA, Kruer TL, Kerr DA 2nd, Smolenkova IA, Erb JL (2008) Biosensors for detecting estrogen-like molecules and protein biomarkers. Adv Exp Med Biol 614: 315 – 322

    Google Scholar 

  148. Zhihong M, Xiaohui L, Weiling F (1999) Anal Commun 36:281–283

    CAS  Google Scholar 

  149. Darain F, Park DS, Park JS, Chang SC, Shim YB (2005) A separation-free amperometric immunosensor for vitellogenin based on screen-printed carbon arrays modified with a conductive polymer. Biosens Bioelectron 20:1780–1787

    CAS  Google Scholar 

  150. Drevenšek P, Zupančič T, Pihlar B, Jerala R, Kolitsch U, Plaper A, Turel I (2005) Mixed-valence Cu(II)/Cu(I) complex of quinolone ciprofloxacin isolated by a hydrothermal reaction in the presence of l-histidine: Comparison of biological activities of various copper-ciprofloxacin compounds. J Inorg Biochem 99:432–442

    Google Scholar 

  151. Lopez-Ortal P, Souza V, Bucio L, Gonzalez E, Gutierrez-Ruiz M (1999) DNA damage produced by cadmium in a human fetal hepatic cell line. Mutat Res Genet Toxicol Environ Mutagen 439:301–306

    CAS  Google Scholar 

  152. Marrazza G, Chianella I, Mascini M (1999) Disposable DNA electrochemical sensor for hybridization detection. Biosens Bioelectron 14:43–51

    CAS  Google Scholar 

  153. Doong RA, Shih HM, Lee SH (2005) Sol-gel-derived array DNA biosensor for the detection of polycyclic aromatic hydrocarbons in water and biological samples. Sens Actuators B Chem 111–112:323–330

    Google Scholar 

  154. Chiorcea Paquim AM, Diculescu VC, Oretskaya TS, Oliveira Brett AM (2004) AFM and electroanalytical studies of synthetic oligonucleotide hybridization. Biosens Bioelectron 20:933–944

    CAS  Google Scholar 

  155. Lazarides AA, Lance Kelly K, Jensen TR, Schatz GC (2000) Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J Mol Struct: Theochem 529:59–63

    CAS  Google Scholar 

  156. Mascini M, Palchetti I, Marrazza G (2001) DNA electrochemical biosensors. Anal Bioanal Chem 369:15–22

    CAS  Google Scholar 

  157. Tombelli S, Mascini M, Turner APF (2002) Improved procedures for immobilisation of oligonucleotides on gold-coated piezoelectric quartz crystals. Biosens Bioelectron 17: 929–936

    CAS  Google Scholar 

  158. Babkina SS, Ulakhovich NA(2005) Complexing of heavy metals with DNA and new bioaf-finity method of their determination based on amperometric DNA-based biosensor. Anal Chem 77:5678–5685

    CAS  Google Scholar 

  159. Mugweru A, Wang B, Rusling J (2004) Voltammetric sensor for oxidized DNA using ultrathin films of osmium and ruthenium metallopolymers. Anal Chem 76:5557–5563

    CAS  Google Scholar 

  160. Lucarelli F, Authier L, Bagni G, Marrazza G, Baussant T, Aas E, Mascini M (2003) DNA biosensor investigations in fish bile for use as a biomonitoring tool. Anal Lett 36:1887–1901

    CAS  Google Scholar 

  161. Lu Y, Liu J, Li J, Bruesehoff PJ, Pavot CMB, Brown AK (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18:529–540

    CAS  Google Scholar 

  162. Wong ELS, Chow E, Justin Gooding J (2007) The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem Commun 9:845–849

    CAS  Google Scholar 

  163. Oliveira SCB, Corduneanu O, Oliveira-Brett AM (2008) In situ evaluation of heavy metal-DNA interactions using an electrochemical DNA biosensor. Bioelectrochemistry 72:53–58

    CAS  Google Scholar 

  164. Chiti G, Marrazza G, Mascini M (2001) Electrochemical DNA biosensor for environmental monitoring. Anal Chim Acta 427:155–164

    CAS  Google Scholar 

  165. Lucarelli F, Palchetti I, Marrazza G, Mascini M (2002) Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater samples. Talanta 56:949–957

    CAS  Google Scholar 

  166. Oliveira-Brett AM, Da Silva LA (2002) A DNA-electrochemical biosensor for screening environmental damage caused by s-triazine derivatives. Anal Bioanal Chem 373:717–723

    CAS  Google Scholar 

  167. So M, Hvastkovs EG, Schenkman JB, Rusling JF (2007) Electrochemiluminescent/voltam-metric toxicity screening sensor using enzyme-generated DNA damage. Biosens Bioelectron 23:492–498

    CAS  Google Scholar 

  168. Zhang GJ, Chua JH, Chee RE, Agarwal A, Wong SM, Buddharaju KD, Balasubramanian N (2008b) Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosens Bioelectron 23:1701–1707

    CAS  Google Scholar 

  169. Feng Y, Yang T, Zhang W, Jiang C, Jiao K (2008) Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: Gold nanoparticle/polyaniline nanotube membranes. Anal Chim Acta 616:144–151

    CAS  Google Scholar 

  170. Sorensen SJ, Burmolle M, Hansen LH (2006) Making bio-sense of toxicity: New developments in whole-cell biosensors. Curr Opin Biotechnol 17:11–16

    CAS  Google Scholar 

  171. Keane A, Phoenix P, Lau PCK, Ghoshal S (2002) Assessing the bioavailability of organic contaminants using a novel bioluminescent biosensor. Conference Proceedings – Joint 2002 CSCE/ASCE International Conference on Environmental Engineering – An International Perspective on Environmental Engineering, pp 1123–1127

    Google Scholar 

  172. Alexander DC, Costanzo MA, Guzzo J, Cai J, Charoensri N, Diorio C, Dubow MS (2000) Blazing towards the next millennium: Luciferase fusions to identify genes responsive to environmental stress. Water Air Soil Pollut 123:81–94

    CAS  Google Scholar 

  173. Kohler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius' J Anal Chem 366:769–779

    CAS  Google Scholar 

  174. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    CAS  Google Scholar 

  175. Ertl P, Wagner M, Corton E, Mikkelsen SR (2003) Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosensors and Bioelectronics, 18:907–916

    CAS  Google Scholar 

  176. Tran MC (1993) Biosensors. Chapman-Hall, London

    Google Scholar 

  177. D'Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Google Scholar 

  178. D'Souza SF (2001) Immobilization and stabilization of biomaterials for biosensor applications. Appl Biochem Biotechnol A Enz Eng Biotechnol 96:225–238

    Google Scholar 

  179. Cosnier S (2007) Recent advances in biological sensors based on electrogenerated polymers: a review. Anal Lett 40:1260–1279

    CAS  Google Scholar 

  180. Martínez M, Hilding-Ohlsson A, Viale AA, Corton E (2007) Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. J Biochem Biophys Methods 70:455–464

    Google Scholar 

  181. Nanduri V, Bhunia AK, Tu SI, Paoli GC, Brewster JD (2007) SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosens Bioelectron 23: 248–252

    CAS  Google Scholar 

  182. Odaci D, Kiralp Kayahan S, Timur S, Toppare L (2008) Use of a thiophene-based conducting polymer in microbial biosensing. Electrochim Acta 53:4104–4108

    CAS  Google Scholar 

  183. Chan C, Lehmann M, Chan K, Chan P, Chan C, Gruendig B, Kunze G, Renneberg R (2000) Designing an amperometric thick-film microbial BOD sensor. Biosens Bioelectron 15:343–353

    CAS  Google Scholar 

  184. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    CAS  Google Scholar 

  185. Riedel K, Lange KP, Stein HJ, Kuhn M, Ott Scheller PF (1990) A microbiol sensor for bod. Water Res 24:883–887

    CAS  Google Scholar 

  186. Lei Y, Mulchandani P, Chen W, Mulchandani A (2005) Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida js444-modified clark oxygen electrode. J Agric Food Chem 53:524–527

    CAS  Google Scholar 

  187. Lei Y, Mulchandani P, Chen W, Mulchandani A (2007) Biosensor for direct determination of fenitrothion and epn using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Appl Biochem Biotechnol 136:243–250

    CAS  Google Scholar 

  188. Liu N, Cai X, Lei Y, Zhang Q, Chan-Park MB, Li C, Chen W, Mulchandani A (2007) Single-walled carbon nanotube based real-time organophosphate detector. Electroanalysis 19:616–619

    CAS  Google Scholar 

  189. Taranova L, Semenchuk I, Manolov T, Iliasov P, Reshetilov A (2002) Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants. Biosens Bioelectron 17:635–640

    CAS  Google Scholar 

  190. Taranova LA, Fesay AP, Ivashchenko GV, Reshetilov AN, Winther-Nielsen M, Emneus J (2004) Comamonas testosteroni strain TI as a potential base for a microbial sensor detecting surfactants. Appl Biochem Microbiol 40:404–408

    CAS  Google Scholar 

  191. Rajasekar S, Rajasekar R, Narasimhan KC (2000) Acetobacter peroxydans based electrochemical biosensor for hydrogen peroxide. Bull Electrochem 16:25–28

    CAS  Google Scholar 

  192. Farre M, Barcelo D (2001) Characterization of wastewater toxicity by means of a whole-cell bacterial biosensor, using Pseudomonas putida, in conjunction with chemical analysis. Anal Bioanal Chem 371:467–473

    CAS  Google Scholar 

  193. berlein S, Spener F, Zaborosch C (2000) Microbial and cytoplasmic membrane-based poten-tiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54:652–658

    Google Scholar 

  194. Mulchandani A, Mulchandani P, Chauhan S, Kaneva I, Chen W (1998a) A potentiometric microbial biosensor for direct determination of organophosphate nerve agents. Electroanalysis 10:733–737

    CAS  Google Scholar 

  195. Mulchandani A, Mulchandani P, Kaneva I, Chen W (1998b) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal Chem 70:4140–4145

    CAS  Google Scholar 

  196. Bhatia R, Dilleen JW, Atkinson AL, Rawson DM (2003) Combined physico-chemical and biological sensing in environmental monitoring. Biosens Bioelectron 18:667–674

    CAS  Google Scholar 

  197. Kratasyuk VA, Esimbekova EN, Gladyshev MI, Khromichek EB, Kuznetsov AM, Ivanova EA (2001) The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems. Chemosphere 42:909–915

    CAS  Google Scholar 

  198. Girotti S, Bolelli L, Fini F, Monari M, Andreani G, Isani G, Carpené E (2006) Trace metals in arcid clam Scapharca inaequivalvis: Effects of molluscan extracts on bioluminescent bacteria. Chemosphere 65:627–633

    CAS  Google Scholar 

  199. Yin JQ, Li XZ, Zhou C, Zhang YH (2005) Luminescent bacterial sensors made from immobilized films of photobacterium phosphoreum. Chem Res Chin Univ 21:44–47

    CAS  Google Scholar 

  200. Stolper P, Fabel S, Weller MG, Knopp D, Niessner R (2008) Whole-cell luminescence-based flow-through biodetector for toxicity testing. Anal Bioanal Chem 390:1181–1187

    CAS  Google Scholar 

  201. Sun Y, Zhou T, Guo J, Li Y (2004) Dark variants of luminous bacteria whole cell biolumines-cent optical fiber sensor to genotoxicants. J Huazhong Univ Sci Technol Med Sci 24: 507 – 509

    CAS  Google Scholar 

  202. Yoo SK, Lee JH, Yun SS, Gu MB, Lee JH (2007) Fabrication of a bio-MEMS based cell-chip for toxicity monitoring. Biosens Bioelectron 22:1586–1592

    CAS  Google Scholar 

  203. Lee HJ, Villaume J, Cullen DC, Kim BC, Gu MB (2003) Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria. Biosens Bioelectron 18:571–577

    CAS  Google Scholar 

  204. Troegl J, Ripp S, Kuncova G, Sayler GS, Churava A, Parik P, Demnerova K, Halova J, Kubicova L (2005) Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens Actuators B Chem 107:98–103

    Google Scholar 

  205. Gu MB, Choi SH (2001) Monitoring and classification of toxicity using recombinant biolu-minescent bacteria. Water Sci Technol 43:147–154

    CAS  Google Scholar 

  206. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    CAS  Google Scholar 

  207. Lee JH, Youn CH, Kim BC, Gu MB (2007) An oxidative stress-specific bacterial cell array chip for toxicity analysis. Biosens Bioelectron 22:2223–2229

    CAS  Google Scholar 

  208. Lee JH, Song CH, Kim BC, Gu MB (2006) Application of a muli-channel system for continuous monitoring and an early warning system. Water Sci Technol 53:341–346

    CAS  Google Scholar 

  209. Ge C, Xu M, Liu J, Lei J, Ju H (2008) Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor. Chem Commun 8:450–452

    Google Scholar 

  210. Lee JH, Gu MB (2005) An integrated mini biosensor system for continuous water toxicity monitoring. Biosens Bioelectron 20:1744–1749

    CAS  Google Scholar 

  211. Bhattacharyya J, Read D, Amos S, Dooley S, Killham K, Paton GI (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Pollut 134:485–492

    CAS  Google Scholar 

  212. Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification Biosens Bioelectron 18:1015–1021

    CAS  Google Scholar 

  213. Pooley DT, Larsson J, Jones G, Rayner-Brandes MH, Lloyd D, Gibson C, Stewart WR (2004) Continuous culture of photobacterium. Biosens Bioelectron 19:1457–1463

    CAS  Google Scholar 

  214. Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol-gel luminescence biosensors: Encapsulation of recombinant E coli reporters in thick silicate films. Anal Chim Acta 462:11–23

    Google Scholar 

  215. Rosen R, Davidov Y, LaRossa RA, Belkin S (2000) Microbial sensors of ultraviolet radiation based on recA ′::Lux fusions. Appl Biochem Biotechnol A Enz Eng Biotechnol 89:151–160

    CAS  Google Scholar 

  216. Polyak B, Bassis E, Novodvorets A, Belkin S, Marks RS (2000) Optical fiber biolumines-cent whole-cell microbial biosensors to genotoxicants. Water Sci Technol 42:305–311

    Google Scholar 

  217. Taguchi K, Tanaka Y, Imaeda T, Hirai M, Mohri S, Yamada M, InoueY(2004) Development of a genotoxicity detection system using a biosensor. Environ Sci 11:293–302

    CAS  Google Scholar 

  218. Philp JC, Balmand S, Hajto E, Bailey MJ, Wiles S, Whiteley AS, Lilley AK, Hajto J, Dunbar SA (2003) Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Anal Chim Acta 487:61–74

    CAS  Google Scholar 

  219. Kim BC, Gu MB (2005) A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant. Environ Monitor Assess 109:123–133

    CAS  Google Scholar 

  220. Strachan G, Capel S, Maciel H, Porter AJR, Paton GI (2002) Application of cellular and immu-nological biosensor techniques to assess herbicide toxicity in soils. Eur J Soil Sci 53:37–44

    CAS  Google Scholar 

  221. Li YF, Li FY, Ho CL, Liao VHC (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut 152:123–129

    CAS  Google Scholar 

  222. Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352

    CAS  Google Scholar 

  223. Admiraal W, Blanck H, Buckert-De Jong M, Guasch H, Ivorra N, Lehmann V, Nyström BAH, Paulsson M, Sabater S (1999) Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res 33:1989–1996

    CAS  Google Scholar 

  224. Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized micro-bial cells: a review. J Ind Microbiol 16:79–101

    CAS  Google Scholar 

  225. Awasthi M, Rai LC (2005) Toxicity of nickel, zinc, and cadmium to nitrate uptake in free and immobilized cells of Scenedesmus quadricauda. Ecotoxicol Environ Saf 61:268–272

    CAS  Google Scholar 

  226. Moreno-Garrido I, Lubian LM, Blasco J (2007) Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin). Environ Int 33:481–485

    CAS  Google Scholar 

  227. Twist H, Edwards AC, Codd GA (1997) A novel in-situ biomonitor using alginate immobilised algae (Scenedesmus subspicatus) for the assessment of eutrophication in flowing surface waters. Water Res 31:2066–2072

    CAS  Google Scholar 

  228. Moreira-Santos M, Soares AMVM, Ribeiro R (2004) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 59:164–173

    CAS  Google Scholar 

  229. Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R (2006) Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enz Microb Technol 38:135–141

    CAS  Google Scholar 

  230. Frense D, ller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sens Actuators B Chem 51:256–260

    Google Scholar 

  231. Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185

    CAS  Google Scholar 

  232. Sanders CA, Rodriguez J, Greenbaum E (2001) Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosens Bioelectron 16:439–446

    CAS  Google Scholar 

  233. Shitanda I, Takada K, Sakai Y, Tatsuma T (2005) Compact amperometric algal biosensors for the evaluation of water toxicity. Anal Chim Acta 530:191–197

    CAS  Google Scholar 

  234. Chouteau C, Dzyadevych S, Chovelon JM, Durrieu C (2004) Development of novel conduc-tometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096

    CAS  Google Scholar 

  235. De-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    CAS  Google Scholar 

  236. Weitz HJ, Campbell CD, Killham K (2002) Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environ Microbiol 4:422–429

    CAS  Google Scholar 

  237. Campanella L, Favero G, Mastrofini D, Tomassetti M (1996) Toxicity order of cholanic acids using an immobilised cell biosensor. J Pharm Biomed Anal 14:1007–1013

    CAS  Google Scholar 

  238. Billinton N, Barker MG, Michel CE, Knight AW, Heyer WD, Goddard NJ, Fielden PR, Walmsley RM (1998) Development of a green fluorescent protein reporter for a yeast geno-toxicity biosensor. Biosens Bioelectron 13:831–838

    CAS  Google Scholar 

  239. Afanassiev V, Sefton M, Anantachaiyong T, Barker G, Walmsley R, lfl S (2000) Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances. Mutat Res Genet Toxicol Environ Mutagen 464:297–308

    CAS  Google Scholar 

  240. Mitchell RJ, Gu MB (2006) Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens Bioelectron 22:192–199

    CAS  Google Scholar 

  241. Benton MG, Glasser NR, Palecek SP (2007) The utilization of a Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct for the selective detection of DNA damage. Mutat Res Genet Toxicol Environ Mutagen 633:21–34

    CAS  Google Scholar 

  242. Hollis RP, Killham K, Glover LA (2000) Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl Environ Microbiol 66:1676–1679

    CAS  Google Scholar 

  243. Terziyska A, Waltschewa L, Venkov P (2000) A new sensitive test based on yeast cells for studying environmental pollution. Environ Pollut 109:43–52

    CAS  Google Scholar 

  244. Tucker CL, Fields S (2001) A yeast sensor of ligand binding. Nat Biotechnol 19:1042–1046

    CAS  Google Scholar 

  245. Sakaki T, Shinkyo R, Takita T, Ohta M, Inouye K (2002) Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily. Arch Biochem Biophys 401:91–98

    CAS  Google Scholar 

  246. Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15:211–219

    CAS  Google Scholar 

  247. Webb JS, Barratt SR, Sabev H, Nixon M, Eastwood IM, Greenhalgh M, Handley PS, Robson GD (2001) Green fluorescent protein as a novel indicator of antimicrobial susceptibility in Aureobasidium pullulans. Appl Environ Microbiol 67:5614–5620

    CAS  Google Scholar 

  248. Knight AW, Keenan PO, Goddard NJ, Fielden PR, Walmsley RM (2004) A yeast-based cytotoxicity and genotoxicity assay for environmental monitoring using novel portable instrumentation. J Environ Monitor 6:71–79

    CAS  Google Scholar 

  249. Polak ME, Rawson DM, Haggett BGD (1996) Redox mediated biosensors incorporating cultured fish cells for toxicity assessment. Biosens Bioelectron 11:1253–1257

    CAS  Google Scholar 

  250. BentleyA,AtkinsonA, Jezek J, Rawson DM (2001) Whole cell biosensors — Electrochemical and optical approaches to ecotoxicity testing. Toxicol in Vitro 15:469–475

    CAS  Google Scholar 

  251. Zhang T, Rawson DM (2002) Studies on cryopreservation of Luc gene transfected bluegill sunfish fibroblast cell line. Cryo-Lett 23:191–196

    Google Scholar 

  252. Dierksen KP, Mojovic L, Caldwell BA, Preston RR, Upson R, Lawrence J, McFadden PN, Trempy JE (2004) Responses of fish chromatophore-based cytosensor to a broad range of biological agents. J Appl Toxicol 24:363–369

    CAS  Google Scholar 

  253. Mojovic L, Dierksen KP, Upson RH, Caldwell BA, Lawrence JR, Trempy JE, McFadden PN (2004) Blind and naive classification of toxicity by fish chromatophores. J Appl Toxicol 24:355–361

    CAS  Google Scholar 

  254. Gu MB, Kim BC, Cho J, Hansen PD (2001) The continuous monitoring of field water samples with a novel multi-channel two-stage mini-bioreactor system. Environ Monitor Assess 70:71–81

    CAS  Google Scholar 

  255. Diamond D (2008) Special section on wireless sensor networks. Talanta 75:605

    CAS  Google Scholar 

  256. Diamond D, Lau KT, Brady S, Cleary J (2008) Integration of analytical measurements and wireless communications-Current issues and future strategies. Talanta 75:606–612

    CAS  Google Scholar 

  257. Carrara S, Shumyantseva VV, Archakov AI, Samori B (2008) Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosens Bioelectron 24:148–150

    CAS  Google Scholar 

  258. Chien JH, Yang CH, Chen PH, Yang CR, Lin CS, Wang H (2008) DNA detection using a radio frequency biosensor with gold nanoparticles. Front Biosci 13:4756–4764

    CAS  Google Scholar 

  259. Cui R, Huang H, Yin Z, Gao D, Zhu JJ (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nano-tubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673

    CAS  Google Scholar 

  260. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens Bioelectron 23:1781–1787

    CAS  Google Scholar 

  261. Endo T, Yamamura S, Kerman K, Tamiya E (2008) Label-free cell-based assay using localized surface plasmon resonance biosensor. Anal Chim Acta 614:182–189

    CAS  Google Scholar 

  262. CaoY, Jin R, Mirkin CA(2001) DNA-modified core-shellAg/Au nanoparticles. JAm Chem Soc 123:7961–7962

    Google Scholar 

  263. Banerjee P, Lenz D, Robinson JP, Rickus JL, Bhunia AK (2008) A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab Investig 88:196–206

    CAS  Google Scholar 

  264. Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci U S A 103:1215–1220

    CAS  Google Scholar 

  265. Boldt TS, S(rensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48:139–148

    CAS  Google Scholar 

  266. Lattier DL, Gordon DA, Burks DJ, Toth GP (2001) Vitellogenin gene transcription: a relative quantitative exposure indicator of environmental estrogens. Environ Toxicol Chem 20:1979–1985

    CAS  Google Scholar 

  267. Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74

    CAS  Google Scholar 

  268. Nemecek S, Marisch K, Juric R, Bayer K (2008) Design of transcriptional fusions of stress sensitive promoters and GFP to monitor the overburden of Escherichia coli hosts during recombinant protein production. Bioproc Biosyst Eng 31:47–53160160

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farré, M., Barceló, D. (2009). Biosensors for Aquatic Toxicology Evaluation. In: Barceló, D., Hansen, PD. (eds) Biosensors for Environmental Monitoring of Aquatic Systems. The Handbook of Environmental Chemistry, vol 5J. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36253-1_5

Download citation

Publish with us

Policies and ethics