Skip to main content

Anomalous Water Optical Absorption: Large-Scale First-Principles Simulations

  • Conference paper
  • 1246 Accesses

Summary

The optical spectrum of water is not well-understood. For example, the main absorption peak shifts upwards by 1.3 eV upon condensation of gas-phase water monomers, which is contrary to the behaviour expected from aggregation-induced broadening of molecular levels. We investigate theoretically the effects of electron-electron and electron-hole correlation, finding that condensation leads to delocalisation of the exciton onto nearby hydrogen-bonded molecules. This reduces its binding energy and has a dramatic impact on the line shape. The calculated spectrum is in excellent agreement with experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R Onaka and T. Takahashi, J. Phys. Soc. Jpn. 24, 548 (1968).

    Article  Google Scholar 

  2. K Kobayashi, J. Phys. Chem. 87, 4317 (1983).

    Article  Google Scholar 

  3. G D Kerr, R N Hamm, M W Williams, R D Birkhoff, and L R Painter, Phys. Rev. A 5, 2523 (1972).

    Article  Google Scholar 

  4. H Hayashi, N Watanabe, Y Udagawa, and C-C Kao, Proc. Natl. Acad. Sci. USA 97, 6264 (2000).

    Article  Google Scholar 

  5. V F Petrenko and I A Ryzhkin, Phys. Rev. Lett. 71, 2626 (1993).

    Article  Google Scholar 

  6. W F Chan, G Cooper, and C E Brion, Chem. Phys. 178, 387 (1993).

    Article  Google Scholar 

  7. K Laasonen, M Sprik, M Parrinello, and R Car, J. Chem. Phys. 99, 9080 (1993).

    Article  Google Scholar 

  8. G P Parravicini and L Resca, Phys. Rev. B 8, 3009 (1973).

    Article  Google Scholar 

  9. L Resca and R Resta, phys. stat. sol. (b) 81, 129 (1977).

    Article  Google Scholar 

  10. W Y Ching, M-Z Huang, and Y-N Xu, Phys. Rev. Lett. 71, 2840 (1993).

    Article  Google Scholar 

  11. B D Bursulaya, J Jeon, C-N Yang, and H J Kim, J. Phys. Chem. A 104, 45 (2000).

    Article  Google Scholar 

  12. G Onida, L Reining, and A Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  Google Scholar 

  13. P H Hahn, W G Schmidt, K Seino, M Preuss, F Bechstedt, and J Bernholc, Phys. Rev. Lett. 94, 037404 (2005).

    Article  Google Scholar 

  14. P H Hahn, W G Schmidt, and F Bechstedt, Phys. Rev. B 72, 245425 (2005).

    Article  Google Scholar 

  15. M S Hybertsen and S G Louie, Phys. Rev. B 34, 5390 (1986).

    Article  Google Scholar 

  16. S Albrecht, L Reining, R Del Sole, and G Onida, Phys. Rev. Lett. 80, 4510 (1998).

    Article  Google Scholar 

  17. L X Benedict, E L Shirley, and R B Bohn, Phys. Rev. Lett. 80, 4514 (1998).

    Article  Google Scholar 

  18. M Rohlfing and S G Louie, Phys. Rev. Lett. 83, 856 (1999).

    Article  Google Scholar 

  19. L J Sham and T M Rice, Phys. Rev. 144, 708 (1966).

    Article  Google Scholar 

  20. W Hanke and L J Sham, Phys. Rev. B 12, 4501 (1975).

    Article  Google Scholar 

  21. W Hanke and L J Sham, Phys. Rev. B 21, 4656 (1980).

    Article  Google Scholar 

  22. I Morrison, J-C Li, S Jenkins, S S Xantheas, and M C Payne, J. Phys. Chem. B 101, 6146 (1997).

    Article  Google Scholar 

  23. E L Briggs, D J Sullivan, and J Bernholc, Phys. Rev. B 54, 14362 (1996).

    Article  Google Scholar 

  24. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  25. D R Hamann, Phys. Rev. B 55, R10157 (1997).

    Article  Google Scholar 

  26. F Bechstedt, R Del Sole, G Cappellini, and L Reining, Solid State Commun. 84, 765 (1992).

    Article  Google Scholar 

  27. J E Northrup, Phys. Rev. B 47, R10032 (1993).

    Article  Google Scholar 

  28. W G Schmidt, S Glutsch, P H Hahn, and F Bechstedt, Phys. Rev. B 67, 085307 (2003).

    Article  Google Scholar 

  29. S Glutsch, D S Chemla, and F Bechstedt, Phys. Rev. B 54, 11592 (1996).

    Article  Google Scholar 

  30. P H Hahn, W G Schmidt, and F Bechstedt, Phys. Rev. Lett. 88, 016402 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G. et al. (2007). Anomalous Water Optical Absorption: Large-Scale First-Principles Simulations. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_4

Download citation

Publish with us

Policies and ethics