Skip to main content

Experiment as a Boundary-Value Problem

  • Reference work entry
Springer Handbook of Experimental Fluid Mechanics

Part of the book series: Springer Handbooks ((SHB))

  • 20k Accesses

Abstract

A fluid flow experiment is an attempt to isolate a part of the world and measure flow and thermodynamic properties. A fluid is defined as a material that deforms continuously if a shear stress is applied. An internal flow situation has walls bounding the flow, but an inflow and outflow position must be controlled. An external flow problem has a uniform flow far from the body of interest. In both situations the state of flow at the boundary is controlled. In the mathematical representation of the flow, the flow conditions on the boundary are specified. This is the nature of the governing physics. If the boundary conditions depend on time the flow situation in the entire region must be specified at the initial time.

In what follows the major physical laws are outlined. In most cases tensor calculus in symbolic form is employed. Scalars are lightface type, vectors are boldface type, and tensors are boldface capitals. However, in cases where confusion is possible with tensor multiplications, index notation is employed. Scalars are then without an index, vectors have one index and tensors have two or more indices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CR:

constraint release

DE:

Doi and Edwards

LDPE:

low-density polyethylene

MSF:

molecular stress function

PMMA:

polymethylmethacrylate

PP:

plate–plate

PS:

polarization spectroscopy

XPP:

extended pom-pom

References

  1. S.I. Green: Fluid Vorticies (Kluwer Academic, Dordrecht 1995)

    Google Scholar 

  2. D.D. Joseph: Fluid Dynamics of Viscoelastic Liquids (Springer, Berlin 1990)

    MATH  Google Scholar 

  3. R.G. Larson: Constitutive Equations for Polymer Melts and Solutions (Butterworths, London 1988)

    Google Scholar 

  4. M. Doi, S.F. Edwards: The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford 1986)

    Google Scholar 

  5. M.H. Wagner: Challenges in Nonlinear Rheology of Linear and Long-Chain Branched Polymer Melts (Proc. XIVth Int. Congr. On Rheology, Korea 2004)

    Google Scholar 

  6. T.C.B. McLeish, S.T. Milner: Entangled dynamics and melt flow behavior of branched polymers, Adv. Polym. Sci. 143, 195–256 (1999)

    Article  Google Scholar 

  7. M.H. Wagner, P. Rubio, H. Bastian: The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release, J. Rheol. 45, 1387–1412 (2001)

    Article  Google Scholar 

  8. H. Bastian: Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows , Ph. D. Thesis (Universität Stuttgart, Stuttgart 2000), http://elib.uni-stuttgart.de/opus/volltexte/2001/894

    Google Scholar 

  9. M.H. Wagner, P. Ehrecke: Dynamics of polymer melts in reversing shear flows, J. Non-Newtonian Fluid Mech. 76, 183–197 (1998)

    Article  MATH  Google Scholar 

  10. A.S. Lodge: Constitutive equations from molecular theories for polymer solutions, Rheol. Acta. 7, 379–392 (1968)

    Article  MATH  Google Scholar 

  11. E. van Ruymbeke, R. Keunings, V. Stéphenne, A. Hagenaars, C. Bailly: Evaluation of reptation models for predicting the linear viscoelastic properties of linear entangled polymers, Macromolecules 35, 2689–2699 (2002)

    Article  Google Scholar 

  12. A.L. Frischknecht, S.T. Milner, A. Pryke, R.N. Young, R. Hawkins, T.C.B. McLeish: Rheology of three-arm asymmetric star polymer melts, Macromolecules 35, 4801–4820 (2002)

    Article  Google Scholar 

  13. M.H. Wagner, J. Meissner: Network disentanglement and time-dependent flow behavior of polymer melts, Macromol. Chem. 181, 1533–1550 (1980)

    Article  Google Scholar 

  14. C.W. Macosko: Rheology, Principles, Measurements and Applications (VCH, New York 1994)

    Google Scholar 

  15. H.M. Laun: Description of the non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta. 17, 1–15 (1978)

    Article  Google Scholar 

  16. M.H. Wagner: Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta. 15, 136–142 (1976)

    Article  Google Scholar 

  17. M.H. Wagner: Prediction of primary normal stress difference from shear viscosity data using a single integral constitutive equation, Rheol. Acta. 16, 43–50 (1977)

    Article  Google Scholar 

  18. M.H. Wagner, S.E. Stephenson: The spike strain test for polymeric liquid and its relevance for irreversible destruction of network connectivity by deformation, Rheol. Acta. 18, 463–468 (1979)

    Article  Google Scholar 

  19. M.H. Wagner, S.E. Stephenson: The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions, J. Rheol. 23, 489–504 (1979)

    Article  Google Scholar 

  20. K. Osaki, S. Kimura, M. Kurata: Relaxation of shear and normal stresses in double-step shear deformations for a polystyrene solution. A test of Doi-Edwards theory for polymer rheology, J. Rheol. 25, 549–562 (1981)

    Article  Google Scholar 

  21. M.H. Wagner: A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt, J. Non-Newtonian Fluid Mech. 4, 39–55 (1978)

    Article  Google Scholar 

  22. A.C. Papanastasiou, L.E. Scriven, C.W. Macosko: An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol. 27, 387–410 (1983)

    Article  Google Scholar 

  23. T. Samurkas, R.G. Larson, J.M. Dealy: Strong extensional and shearing flows of a branched polyethylene, J. Rheol. 33, 559–578 (1989)

    Article  Google Scholar 

  24. P.K. Currie: Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models, J. Non-Newtonian Fluid Mech. 11, 53–68 (1982)

    Article  MATH  Google Scholar 

  25. M.H. Wagner, A. Demarmels: A constitutive analysis of extensional flows of polyisobutylene, J. Rheol. 34, 943–958 (1990)

    Article  Google Scholar 

  26. O. Urakawa, M. Takahashi, T. Masuda, N.G. Ebrahimi: Damping functions and chain relaxation in uniaxial and biaxial elongation: comparison with the Doi-Edwards theory, Macromolecules 28, 7196–7201 (1995)

    Article  Google Scholar 

  27. B.J.R. Scholtens, P.J.R. Leblans: Nonlinear viscoelasticity of noncrystalline EPDM rubber networks, J. Rheol. 30, 313–335 (1986)

    Article  Google Scholar 

  28. M.H. Wagner: The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model, Rheol. Acta. 29, 594–603 (1990)

    Article  Google Scholar 

  29. D.S. Pearson, A. Kiss, L. Fetters, M. Doi: Flow-induced birefringence of concentrated polyisoprene solutions, J. Rheol. 33, 517–535 (1989)

    Article  Google Scholar 

  30. G. Ianniruberto, G. Marrucci: A simple constitutive equation for entangled polymers with chain stretch, J. Rheol. 45, 1305–1318 (2001)

    Article  Google Scholar 

  31. J. Fang, M. Kröger, H.M. Öttinger: A thermodynamically admissible reptation model for fast flows of entangled polymers: II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293–1316 (2000)

    Article  Google Scholar 

  32. T.C.B. McLeish, R.G. Larson: Molecular constitutive equations for a class of branched polymers: the pom-pom polymer, J. Rheol. 42, 81–110 (1998)

    Article  Google Scholar 

  33. T.C.B. McLeish: Molecular rheology of H-polymers, Macromolecules 21, 1062–1070 (1988)

    Article  Google Scholar 

  34. N.J. Inkson, T.C.B. McLeish, O.G. Harlen, D.J. Groves: Predicting low density polyethylene melt rheology in elongational and shear flows with pom-pom constitutive equations, J. Rheol. 43, 873–896 (1999)

    Article  Google Scholar 

  35. R.J. Blackwell, T.C.B. McLeish, O.G. Harlen: Molecular drag-strain coupling in branched polymer melts, J. Rheol. 44, 121–136 (2000)

    Article  Google Scholar 

  36. R.G. Owens, T.N. Phillips: Computational Rheology (Imperial College Press, London 2002)

    Book  MATH  Google Scholar 

  37. P. Rubio, M.H. Wagner: Letter to the Editor: A note added to "Molecular constitutive equations for a class of branched polymers: The pom-pom model", J. Rheol. 43, 1709–1710 (1999)

    Article  Google Scholar 

  38. P. Rubio, M.H. Wagner: LDPE melt rheology and the pom-pom polymer, J. Non-Newtonian Fluid Mech. 92, 245–259 (2000)

    Article  MATH  Google Scholar 

  39. R.J. Blackwell, O.G. Harlen, T.C.B. McLeish: Theoretical linear and non-linear rheology of symmetric treelike polymer melts, Macromolecules 34, 2579–2596 (2001)

    Article  Google Scholar 

  40. P.J. Doerpinghaus, D.G. Baird: Accessing the branching architecture of sparsely branched metallocene-catalyzed polyethylenes using the pompom constitutive model, Macromolecules 35, 10087–10095 (2002)

    Article  Google Scholar 

  41. W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens: Differential constitutive equations for polymer melts: The extended pom-pom model, J. Rheol. 45, 823–843 (2001)

    Article  Google Scholar 

  42. N. Clemeur, R.P.G. Rutgers, B. Debbaut: On the evaluation of some differential formulations for the pom-pom constitutive model, Rheol. Acta. 42, 217–231 (2003)

    Google Scholar 

  43. G. Marrucci, B. de Cindio: The stress relaxation of molten PMMA at large deformations and its theoretical interpretation, Rheol. Acta. 19, 68–75 (1980)

    Article  Google Scholar 

  44. M.H. Wagner, J. Schaeffer: Constitutive equations from Gaussian slip-link network theories in polymer melt rheology, Rheol. Acta. 31, 22–31 (1992)

    Article  Google Scholar 

  45. M.H. Wagner, J. Schaeffer: Rubbers and Polymer melts: Universal aspects of non-linear stress-strain relations, J. Rheol. 37, 643–661 (1993)

    Article  Google Scholar 

  46. M.H. Wagner: The non-linear strain measure of polymer melts and rubbers: A unifying approach, Makromol. Chem. Macromol. Symp. 68, 95–108 (1993)

    Article  Google Scholar 

  47. M.H. Wagner, J. Schaeffer: Assessment of non-linear strain measures for extensional and shearing flows of polymer melts, Rheol. Acta. 33, 506–516 (1994)

    Article  Google Scholar 

  48. M.H. Wagner, J. Schaeffer: Nonlinear strain measures for general biaxial extension of polymer melts, Rheol. Acta. 36, 1–26 (1992)

    Google Scholar 

  49. M.H. Wagner, M. Yamaguchi, M. Takahashi: Quantitative assessment of strain hardening of LDPE melts by MSF model, J. Rheol. 47, 779–793 (2003)

    Article  Google Scholar 

  50. M.H. Wagner, J. Hepperle, H. Münstedt: Relating molecular structure of model branched polystyrene melts to strain-hardening by molecular stress function theory, J. Rheol. 48, 489–503 (2004)

    Article  Google Scholar 

  51. M.H. Wagner, S. Kheirandish, M. Yamaguchi: Quantitative analysis of melt elongational behavior of LDPE/LLDPE blends, Rheol. Acta 44, 198–218 (2005)

    Article  Google Scholar 

  52. M.H. Wagner, S. Kheirandish, K. Koyama, A. Nishioka, A. Minegishi, T. Takahashi: Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory 44, 235–243 (2005)

    Google Scholar 

  53. P.G. de Gennes: Reptation of polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55, 572–579 (1971)

    Article  Google Scholar 

  54. G. Marrucci, N. Grizzutti: The free energy function of the Doi-Edwards theory: Analysis of instabilities in stress relaxation, J. Rheol. 27, 433–450 (1983)

    Article  Google Scholar 

  55. G. Marrucci, J.J. Hermans: Non-linear viscoelasticity of concentrated polymeric liquids, Macromolecules 13, 380–387 (1980)

    Article  Google Scholar 

  56. J. Hepperle: Einfluss der molekularen Struktur auf rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen (Shaker, Aachen 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald Panton , Saeid Kheirandish Ph.D or Manfred Wagner Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Panton, R., Kheirandish, S., Wagner, M. (2007). Experiment as a Boundary-Value Problem. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics