Skip to main content

Role of Modeling in Pharmacotherapeutics

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeVita, V., Principles of cancer management: chemotherapy, in Cancer: Principles and Practice of Oncology, V.T. De Vita, S. Hellman, and S. Rosenberg, Editors. 1997, J.B. Lippincott Co.: Philadelphia. p. 337–347

    Google Scholar 

  2. Skipper, H.E., Laboratory models: the historical perspective. Cancer Treatment Rep, 1986. 70: p. 3–7

    CAS  Google Scholar 

  3. Skipper, H., F.J. Schabel, and W. Wilcox, Experimental evaluation of potential anticancer agents XIII: On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemotherapy Reports, 1964. 35: p. 1

    CAS  Google Scholar 

  4. Luria, S. and M. Delbruck, Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 1943. 28: p. 491–511

    PubMed  CAS  Google Scholar 

  5. DeVita, V., R. Young, and G. Canellos, Combination versus single agent chemotherapy: A review of the basis for selection of drug treatment of cancer. Cancer, 1975. 35: p. 98–110

    Article  PubMed  Google Scholar 

  6. Cannellos, G.P., V.T. DeVita, G.L. Gold, et al., Cyclical combination chemotherapy for advanced breast cancer. British Medical Journal, 1974. 1(901): p. 218–220

    Article  Google Scholar 

  7. Sledge, G.W., D. Neuberg, P. Bernardo, et al., Phase III Trial of Doxorubicin, Paclitaxel, and the Combination of Doxorubicin and Paclitaxel as Front-Line Chemotherapy for Metastatic Breast Cancer: An Intergroup Trial (E1193). J Clin Oncol, 2003. 21(4): p. 588–592

    Article  PubMed  Google Scholar 

  8. Henderson, I.C., D.A. Berry, G.D. Demetri, et al., Improved Outcomes From Adding Sequential Paclitaxel but Not From Escalating Doxorubicin Dose in an Adjuvant Chemotherapy Regimen for Patients With Node-Positive Primary Breast Cancer. J Clin Oncol, 2003: p. JCO.2003.02.063

    Google Scholar 

  9. Fisher, B., S. Anderson, A. DeCillis, et al., Further Evaluation of Intensified and Increased Total Dose of Cyclophosphamide for the Treatment of Primary Breast Cancer: Findings From National Surgical Adjuvant Breast and Bowel Project B-25. J Clin Oncol, 1999. 17(11): p. 3374–3388

    PubMed  CAS  Google Scholar 

  10. Fisher, B., S. Anderson, D. Wickerham, et al., Increased intensification and total dose of cyclophosphamide in a doxorubicin-cyclophosphamide regimen for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-22. J Clin Oncol, 1997. 15: p. 1858–1869

    PubMed  CAS  Google Scholar 

  11. Winer, E., D. Berry, D. Duggan, et al., Failure of higher dose paclitaxel to improve outcome in patients with metastatic breast cancer—results from calgb 9342. Proceedings ASCO, 1998. 17: p. abstract 388

    Google Scholar 

  12. Wood, W., D. Budman, A. Korzun, et al., Dose and Dose Intensity Trial of Adjuvant Chemotherapy for Stage II, Node-Positive Breast Carcinoma. New Engl J Med, 1994. 330: p. 1253–1259

    Article  PubMed  CAS  Google Scholar 

  13. Budman, D., D. Berry, C. Cirrincione, et al., Dose and dose intensity as determinants of outcome in the adjvuant treatment of breast cancer. JNCI, 1998. 90(16): p. 1205–11

    Article  PubMed  CAS  Google Scholar 

  14. Fisher, B., C. Redmond, D.L. Wickerham, et al., Doxorubicin-containing regimens for the treatment of stage II breast cancer: the National Surgical Adjuvant Breast and Bowel Project experience. Journal of Clinical Oncology, 1989. 7: p. 572–582

    PubMed  CAS  Google Scholar 

  15. Fisher, B., A.M. Brown, N.V. Dimitrov, et al., Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: Results from the National Surgical Breast and Bowel Project B-15. Journal of Clinical Oncology, 1990. 8: p. 1483–1496

    PubMed  CAS  Google Scholar 

  16. Group, E.B.C.T.C., Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet, 1998. 352: p. 930–942

    Article  Google Scholar 

  17. Norton, L., R. Simon, J. Brereton, et al., Predicting the course of Gompertzian growth. Nature, 1976. 264: p. 542–545

    Article  PubMed  CAS  Google Scholar 

  18. Norton, L. and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treatment Reports, 1977. 61(7): p. 1307–1315

    PubMed  CAS  Google Scholar 

  19. Stadtmauer, E., A. O’Neill, L. Goldstein, et al., Phase III Randomized Trial of High-Dose Chemotherapy (HDC) and Stem Cell Support (SCT) Shows No Difference in Overall Survival or Severe Toxicity Compared to Maintenance Chemotherapy with Cyclophosphamide, Methotrexate and 5-Fluorouracil (CMF) for Women with Metastatic Breast Cancer Who Are Responding to Conventional Induction Chemotherapy: The ‘Philadelphia’ Intergroup Study (PBT-1). Proc Am Soc Clin Onc, 1999. 18: p. abs 1

    Google Scholar 

  20. Antman, K., P. Rowlings, W. Vaughan, et al., High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America. Journal of Clinical Oncology, 1997. 15(5): p. 1870–9

    PubMed  CAS  Google Scholar 

  21. Vahdat, L. and K. Antman, High-dose chemotherapy with autologous stem cell support for breast cancer. Current Opinion in Hematology, 1997. 4(6): p. 381–9

    Article  PubMed  CAS  Google Scholar 

  22. Berry, D.A., G. Broadwater, J.P. Klein, et al., High-Dose Versus Standard Chemotherapy in Metastatic Breast Cancer: Comparison of Cancer and Leukemia Group B Trials With Data From the Autologous Blood and Marrow Transplant Registry. J Clin Oncol, 2002. 20(3): p. 743–750

    Article  PubMed  CAS  Google Scholar 

  23. Norton, L., Implications of kinetic heterogeneity in clinical oncology. Seminars In Oncology, 1985. 12: p. 231–249

    PubMed  CAS  Google Scholar 

  24. Nabholtz, J., T. Pienkowski, J. Mackey, et al., Phase III trial comparing TAC (docetaxel, doxorubicin, cyclophosphamide) with FAC (5-fluorouracil, doxorubicin, cyclophosphamide) in the adjuvant treatment of node positive breast cancer (BC) patients: interim analysis of the BCIRG 001 study. Proc. Am Soc. Clin. Onc, 2002. 21: p. abstr# 141

    Google Scholar 

  25. Buzdar, A., S. Singletary, V. Valero, et al., Evaluation of Paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin Cancer Res, 2002. 8(5): p. 1073–9

    PubMed  CAS  Google Scholar 

  26. Goldie, J.H. and A.J. Coldman, A mathematical model for relating drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Reports, 1979. 63: p. 1727–1733

    PubMed  CAS  Google Scholar 

  27. Goldie, J.H., A.J. Coldman, and G.A. Gudauskas, Rationale for the use of alternating noncross-resistant chemotherapy. Cancer Treatment Reports, 1982. 66(3): p. 439–449

    PubMed  CAS  Google Scholar 

  28. Norton, L. and R. Simon, The Norton-Simon hypothesis revisited. Cancer Treatment Reports, 1986. 70: p. 163–169

    PubMed  CAS  Google Scholar 

  29. Bonadonna, G., M. Zambette, and P. Valagussa, Sequential or alternating doxorubicin and CMF regimens in breast cancer with more than three positive nodes. The Journal of the American Medical Association, 1995. 273(7): p. 542–547

    Article  CAS  Google Scholar 

  30. Mamounas, E., J. Bryant, B. Lembersky, et al., Paclitaxel (T) following doxorubicin/cyclophosphamide (AC) as adjuvant chemotherapy for node-positive breast cancer: Results from NSABP B-28. Proc Am Soc Clin Onc, 2003: p. Abstr # 12

    Google Scholar 

  31. Perloff, M., L. Norton, A. Korzun, et al., Postsurgical adjuvant chemotherapy of stage II breast carcinoma with or without crossover to a noncross-resistant: A CALGB study. Journal of Clinical Oncology, 1996. 14: p. 1589–98

    PubMed  CAS  Google Scholar 

  32. Crown, J., G. Raptis, N. Hamilton, et al., High-dose chemotherapy of breast cancer: current status and developmental strategies. Eur J Cancer, 1995. 31A: p. 809–811

    Article  PubMed  CAS  Google Scholar 

  33. Rodenhuis, S., M. Bontenbal, L. Beex, et al., Randomized Phase III Study of High-Dose Chemotherapy with Cyclophosphamide, Thiotepa and Carboplatin in Operable Breast Cancer with 4 or More Axillary Lymph Nodes. Proc. Am Soc. Clin. Onc, 2000. 19: p. abs. 286

    Google Scholar 

  34. Peters, W., G. Rosner, J. Vredenburgh, et al., A prospective, randomized comparison of two doses of combination alkylating agents (AA) as consolidation after CAF in high-risk primary breast cancer involving ten or more axillary lymph nodes (LN): preliminary results of CALGB 9082/SWOG 9114/NCIC MA-13. Proc Am Soc Clin Onc, 1999. 18: p. Abs #2

    Google Scholar 

  35. Bergh, J., T. Wiklund, B. Erikstein, et al., Tailored fluorouracil, epirubicin, and cyclophosphamide compared with marrow-supported high-dose chemotherapy as adjuvant treatment for high-risk breast cancer: a randomised trial. Scandinavian Breast Group 9401 study. Lancet, 2000. 356(9239): p. 1384–1391

    Article  PubMed  CAS  Google Scholar 

  36. Hudis, C., A. Seidman, J. Baselga, et al., Sequential Dose-Dense Doxorubicin, Paclitaxel, and Cyclophosphamide for Resectable High-Risk Breast Cancer: Feasibility and Efficacy. J Clin Oncol, 1999. 17(1): p. 93–

    PubMed  CAS  Google Scholar 

  37. Hudis, C., M. Fornier, L. Riccio, et al., 5-Year Results of Dose-Intensive Sequential Adjuvant Chemotherapy for Women With High-Risk Node-Positive Breast Cancer: A Phase II Study. J Clin Oncol, 1999. 17(4): p. 1118–

    PubMed  CAS  Google Scholar 

  38. Fornier, M.N., A.D. Seidman, M. Theodoulou, et al., Doxorubicin followed by sequential paclitaxel and cyclophosphamide versus concurrent paclitaxel and cyclophosphamide: 5-year results of a phase II randomized trial of adjuvant dose-dense chemotherapy for women with node-positive breast carcinoma. Clin Cancer Res, 2001. 7(12): p. 3934–41

    PubMed  CAS  Google Scholar 

  39. Gabrilove, J., A. Jakubowski, H. Scher, et al., Effect of granulocyte colony-stimulating factor on neutropenia associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. New England Journal of Medicine. 318(22):1414–22, 1988., 1988. 318(22): p. 1414–22

    Article  PubMed  CAS  Google Scholar 

  40. Citron, M.L., D.A. Berry, C. Cirrincione, et al., Randomized Trial of Dose-Dense Versus Conventionally Scheduled and Sequential Versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol, 2003: p. JCO.2003.09.081

    Google Scholar 

  41. Fisher, B., S. Anderson, A. DeCillis, et al., Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-25. Journal of Clinical Oncology, 1999. 17: p. 3374–88

    PubMed  CAS  Google Scholar 

  42. Haskell, C., S. Green, G. Sledge, et al., Phase III comparison of adjuvant high-dose doxorubicin plus cyclophosphamide (AC) versus sequential doxorubicin followed by cyclophosphamide (A-τ;C) in breast cancer patients with 0-3 positive nodes (intergroup 0137). Proc. Am Soc. Clin. Onc, 2002. 21: p. abstract 142

    Google Scholar 

  43. Case, D., R. Bukowski, R. Carey, et al., Recombinant human erythropoietin therapy for anemic cancer patients on combination chemotherapy. J Natl Cancer Inst, 1993. 85: p. 801–06

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Norton, L., Hudis, C. (2006). Role of Modeling in Pharmacotherapeutics. In: Piccart, M.J., Hung, MC., Solin, L.J., Cardoso, F., Wood, W.C. (eds) Breast Cancer and Molecular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28266-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28266-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28265-5

  • Online ISBN: 978-3-540-28266-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics