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Abstract. Born through the work of Edwin H. Land and John J.
McCann more than 40 years ago, Retinex theory proposes a compu-
tational model to explain and estimate the human color sensation, i.e.
the color perception that human vision system produces when oberving
a scene. Retinex is founded on a series of experiments, evidencing that
the human color sensation at any observed point does not depend merely
on the photometric cues of that point, but also on those of the surround-
ing regions and on their spatial arrangement. Indeed, human color vision
is a spatial process. This paper presents the conceptual framework of
Retinex, the main challenges it faced and solved, and some algorithmic
procedures implementing it.

1 Introduction

Developed by Edwin H. Land and John J. McCann, Retinex [22,23] is an inter-
esting theory proposing a computational model to estimate the human color
sensation, i.e. the color perception produced by the human vision system when
observing a scene. More precisely, in “The Science of Color” [32], the Commit-
tee on Colorimetry of the Optical Society of America defines the human color
sensation as a “mode of mental functioning that is directly associated with the
stimulation of the organism”.

Retinex originated in the late 1950 s from a series of experiments, evidencing
that the process of the color formation performed by the human vision system
strongly differs from that performed by a camera. In particular, experiments
carried out on sets of colored patches, called Mondrians, showed that the color
appearance as reported by humans looking a scene does not correlate with the
radiances of the observed scene. This means that the human color sensation
may differ from the color computed from the quanta catches coming from the
observed scene and acquired by the eye photo-receptors. Therefore, the color of
an object under a given light as reported by a human may differ from the color
of the same object under the same conditions as detected by a camera. This
phenomenon is at the basis of the human color constancy, that is the human
capability to discount a color cast due to the light illuminating the scene, so
that a same object viewed under different light conditions is perceived as the
same entity [11].
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Land and McCann hypothesized that when looking a scene, the human vision
system processes independently the long, medium and short wavelengths coming
from the scene and acquired by the retina photo-receptors, and produces a novel
scene, whose wavebands, termed the lightnesses, have color constancy [22,23].

To understand the mechanism of the lightness formation, Land and McCann
developed new experiments, that showed the importance, in the color formation,
of the edges and of the relative spatial relationships among the reflectances of
the observed regions. They definitely proved that color sensation and thus color
vision are spatial processes, related to the local color distribution of the image.
The empirical evidences they collected lead to a computational model able to
estimate the color sensation from a RGB stimulus, i.e. the Retinex algorithm.

The outcomes of their research were also supported by biological studies on
human vision, e.g. [3,6–9,19], that revealed the existence of a mechanism of
spatial interaction among the responses of the eye photoreceptors, taking place
both in the retina and in the primary visual cortex of the brain. Inspired by some
of these works, in 1963, Land named its theory Retinex, from the contraction of
the words RETina and cortEX.

From its first announcement, the Retinex theory continuously attracts the
attention of the research world. A complete understanding of how humans see
colors is still an open problem. The human vision system is a complex machine,
much efforts are necessary to have a complete knowledge about it. Retinex
represents a significant step in this direction, and it still attracts the inter-
est of researches from different areas, such as computer scientists, biologists,
psychologists. Many variants of the original Retinex algorithm of Land and
McCann and of its spatial color sampling have been proposed, with the main
aims of further investigating the mechanism of spatial color interaction, propos-
ing more efficient computational algorithmic solutions, and/or solving practical
problems of machine vision, such as color image enhancement, color rendition,
dynamic range compression, image retrieval based on human color constancy.
e.g. [4,14,16,18,25,34–36,38–40].

This works introduces in Sect. 2 the conceptual framework of Retinex the
main challenges it faced and solved, and the original algorithm. In addition, this
paper presents some algorithms of the Milano Retinex family, a special class of
Retinex inspired implementations, mainly employed for image color enhancement
(Sect. 3). Final conclusions are drawn in Sect. 4.

2 The Original Retinex Algorithm

This Section describes the experiments at the basis of the Retinex theory and the
algorithm proposed by Land and McCann and its algorithmic implementation.
More details are available in [22,23,27,28].
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2.1 The Experiments

The evidences at the basis of the Retinex theory have been collected by a series
of experiments, that can be classified in two groups: experiments on color patches
(color Mondrians) and experiments on gray level patches (gray Mondrians).

Fig. 1. Two Mondrians are illuminated by two lights (on top), tuned so that the green
circle on left and the red circle on right have the same radiance. An observer looks at
them. Despite the identical quanta catches, the observer reports green color on left and
red color on right. The experiment shows that color sensation does not correlate with
radiance. (Color figure online)

Experiments on Color Mondrians: the color constancy - Retinex theory
was born from some experiments Land was carried on at the late of 1950 s at the
Polaroid Corporation, of which he was a con-founder. A colleague projected on
a screen a mixture of two monochromatic pictures, one through a red filter and
the other one through a simple white light: in the final picture, he observed more
than the white, black and reddish colors that were expected. Land explained this
phenomenon by supposing the existence of a sort of color adaptation performed
by the human vision system.

To better understand this phenomenon, Land prepared other tests by using
panels of colored patterns, that he named a Mondrian, because of its similarity
with the artworks of the Dutch painter Pieter Cornelis Mondriaan (1872–1944),
known as Mondrian. The Mondrians were built up and used under controlled
conditions, e.g. specularities of highlights were avoided.

In an experiment, he considered two identical Mondrians, positioned side/by-
side. He attached respectively on the left Mondrian a circular green paper, and
on the right Mondrian a circular red paper. Then he illuminated each Mondrian
uniformely with a light source, tuned so that the radiance from the green and red
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circles was the same (see Fig. 1). If the human vision system works as a standard
photo-camera, then an observer should say that the green and the red circles have
the same color: on the contrary, the green and the red circles appeared to the
observers still green and red. Land repeated the experiments by changing the
time of fixation and the color of the patches, but again, the result was the same:
the observers were able to detect the actual color of the patches. The color as
reported by the humans did not correlate with the physical radiances.

This experiments suggested that the human vision system performs a sort of
color adaptation, that discount color casts due to the illumination. This mech-
anism is at the basis of the color constancy, that is the human capability to
recover the reflectance of an observed object inspite the color of the light.

Land arrived to the following, first, important conclusion: when the human
vision system observes a scene, the long, medium and short wavebands are
processed by the human vision system in order to be color constant. Land
hypothized that, for any observed scene, the human vision system produces
a new image, whose long, medium and short wavebands, named lightnesses, are
computed independently from the long, medium and short wavebands of the
observed scene, acquired by the retina photo-receptors, i.e. by cones and rods.

According to biological studies, that revealed that the human vision takes
place in the retina and in the visual primary cortex of the brain [3,6–9,19], Land
named its theory Retinex from the words RETina and cortEX.

Experiments on Gray-Level Mondrians: edge importance and spatial
issues - The experiments of Land proceeded with the help of other colleagues
of the Polaroid Corporation and in particular of John J. McCann, which joint
the Vision Research Laboratory of the company in 1961.

To understand the mechanism of the lightness computation, Land and
McCann took into account some visual phenomena suggesting a spatial character
of the vision, i.e. simultaneous contrast and edge importance in color vision.

The simultaneous contrast is a phenomenon studied by the French chemist
Michel Eugène Chevreul in the 19th century and illustrated in Fig. 2: the same
gray square is positioned at the center of two squares with different colors. The
square appears darker when it is shown on the left background.

This observation leads to the following, second result: the color sensation at
a point depends on the surrounding colors, thus in the lightness, the color at a
point is modified relatively to the colors in its surround.

Expressing a quantity relatively to an other quantity implies a comparison
process, that can be accomplished through the computation of the ratio between
these quantities. Therefore, Land and McCann arrived to the conclusion that
the lightness depends on ratios between the reflectances of near-by areas, as
suggested by the phenomenon illustrated in Fig. 3: the adjacent squares on left
appear differently colored, but this does not happen when the central edge is
occluded (right). The importance of the edges in color sensation was deeply
investigated by a series of experiments on a gray level Mondrian illuminated
by a smooth gradient. Again, observers were asked to report their sensation on
the different Mondrian patches, leading to the following outcomes: (1) the ratio
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Fig. 2. Simultaneous Contrast: the gray square shown on different background appears
differently colored. This phenomenon suggests the existence of a spatial interaction
among the colors.

Fig. 3. The picture on left appears composed by two rectangles with two slightly
different gray intensities, displayed on a dark background. When the central edge is
occluded by a black rectangle, the gray levels of the two rectangles appears equal to
each other.

between points located across an edge correlates with the appearance; (2) slight
edges are irrelevant to color sensation. Finally, the analysis of edges implies a
local image processing: the color sensation does not depend on global proper-
ties, like for instance the color distribution over the whole image represented by
histograms [29].

Finally, another spatial issue had to be considered in color sensation: accord-
ing to the study in [5], the color sensation at a point is influenced more by the
colors of the regions closer to that point that by those of regions located far way.

To sum up, the Retinex theory states that the human color sensation is a
complex process, that involves a local, spatial comparison among different areas
of any observed scene.

2.2 The Algorithm

The different outcomes of the experiments lead to an algorithm for the predic-
tion of the color sensation. The general workflow of this algorithm applied to a
RGB image consists of three main steps: (1) pre-calibration; (2) color filtering;
(3) post-calibration.
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The pre-calibration step matches the digital values of the device used for
image acquisition with the actual luminance of the observed scene. The pre-
calibrated image undergoes to the spatial comparison which at the basis of the
lightness computation: this phase, that we call color filtering, is the main core of
the Retinex algorithm. The output image is the input of the post-calibration step,
which remaps the digits into a scale of appearance. Pre- and post-calibrations
are fundamental steps for modeling the human color vision [27,30].

According to the experiments carried out on color and grey Mondrians, the
Retinex algorithm proposed by Land and McCann processes any input image
channel by channel as follows. For each channel, a set of paths randomly chosen
over the image is used to explore and compare the image intensities of different
regions. Given a path connecting two image regions, the algorithm computes
the lightness by the so-called chain ratio, i.e. the product of the ratios between
the intensity values of adjacent pixels. Ratios are a way to measure the image
gradient, thus to detect the edges, that, according to the experiments described
before, play an important role in color sensation. The multiplication of the ratios
allows to spatially relate the color information among distant regions without
loosing the information along the bridges system [27]. When the ratio product
along a path exceeds the value 1.0, a reset mechanism is implemented: the cumu-
lative product is set to 1.0 and the ratio chain restarts from this value. Reset
is a fundamental operation: it implements a normalization process that is per-
formed by our vision system and that allows to express the color we perceive
at a point relatively to the other, i.e. as a percentage of a local white detected
in its surround (see Chaps. 21 and 33 in [27]). When a ratio is close to one, its
contribution is cast to 1.0: this operation reproduces the experimental evidence
that slight edges do not contribute to the color sensation. An example of the
ratio-product-reset procedure is given in Fig. 4.

The original Retinex algorithm is iterative, i.e. the paths are computed each
after the other, and it is destructive, i.e. the digital values of the input image are
overwritten with the values output by the ratio-reset procedure computed along
the path. Many paths are computed over the image to guarantee an accurate
exploration of the color distribution around each region and to reduce the chro-
matic noise due to the random path sampling. Finally, the lightness at a point
is computed by averaging the partial results over the total number of paths.

The whole mechanism implemented by Retinex is called ratio-product-reset-
average from its main steps.

The work in [33] provides the equation of the ratio-product-reset-average
mechanism for the computation of the color filtering. Let I be a color channel of
a pre-calibrated RGB image and let x be an image pixel. Hereafter, the intensity
levels of I are supposed to be normalized in order to range over (0, 1]. The
neighborhood of x is explored by a set of n paths γ1, . . . , γn, each of them
ending at x and starting from a pixel yk (k = 1, . . . , n) randomly selected over
the image. Each path γ ∈ {γ1, . . . , γn} is modeled as a function defined on a
set of natural numbers {1, . . . , lk} such that γ(1) := x, γ(lk) = xlk := yk, while
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Fig. 4. Example of the ratio-reset mechanism of the Retinex algorithm. See text for
more explanation.

γ(tk−1) = xk−1 and γ(tk) = xk are subsequent pixels over γ (k = 2, . . . , lk). The
parameter lk denotes the length of the path γk.

The lightness at x (before post-calibration) is given by

L(x) =
1
n

n∑

k=1

lk∏

tk=1

δk(Rtk
) :=

1
n

n∑

k=1
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tk=1

δk

(I(xk+1)
I(xk)

)
(1)
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)
1

∏tk−1
mk
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)
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∏tk−1

mk
δk(Rmk

)

(2)

The threshold ε is a positive parameter ranging over [0, 1] and introduced to
model the insensitivity of the color sensation to slight gradients.

The path-based approach proposed in the pioneer works [22,23] is not the
unique possible spatial color sampling for estimating color sensation. In 1986,
Land presented an alternative version of the Retinex algorithm, where the path
based color sampling is replaced by a sort of high-pass filter [20,21]. Precisely,
in this work, Land computed the value L(x) as the ratio between the intensity
value at x and the average value of a set of pixels located in a surround of x,
having density proportional to the Euclidean distance from x, i.e.

L(x) =
I(x)

(I ∗ Gσ)(x)
(3)

where Gσ is a convolution kernel, usually a Gaussian one, e.g. Gσ(x) =
1√
2πσ

e− ‖x‖
σ2 , ∀x ∈ R2, and σ is a real, strictly positive number. This Retinex

version attracted the interest of many researchers, that investigate the prop-
erties and the mathematical form of this implementation [17]. This algorithm,
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also called Single-Scale Retinex, has been then extended to a multi-scale ver-
sion, termed Multi-Scale Retinex. This latter has been proved to perform bet-
ter that the Single-Scale version in many applications, such as dynamic range
compression, color rendition, contrast enhancement in medical imaging, e.g.
[13,15,16,35,37,41]. The Multi-Scale Retinex modifies the Eq. (3) by comput-
ing a weighted average of many Single-Scale Retinex outputs, generally in a
logarithmic space:

log L(x) =
1
n

n∑

i=1

wi(log I(x) − log((I ∗ Gσn
)(x))) (4)

where the wis are parameters weighting the different single-scale Retinex out-
puts, and n > 1.

Many different spatial color sampling inspired by the Retinex principles have
been (and still are) proposed in the literature to solve many different computer
vision problems, as those listed above. The next Section presents some algorithms
of the so-called Milano Retinex family [33], a special class of Retinex-inspired
color filtering implementions mainly used for color enhancement. This family is of
interest because its members perform a color filtering based on an approximated
version of Eq. (2) and exploit different spatial exploration schemes, including
path-based, 2D, and probabilistic spatial color sampling.

3 Alternative Spatial Color Sampling: Examples
from Milano Retinex Family

The Milano Retinex algorithms differ from the original Retinex in three main
points. First, they propose alternative ways for the spatial exploration of the
image. Second, the computational color filtering procedure is not destructive.
Third, they compute the lightness L by an approximation of Eq. (2), obtained
by setting ε = 0. This choice is justified both by mathematical and empirical
issues, showing that the threshold mechanism is in general unessential [33]. When
ε = 0, Eq. (2) becomes simpler, precisely, for any color channel I, the lightness
at a pixel x (named target) is given by:

L(x) =
1
n

n∑

i=1

I(x)
I(mi)

(5)

where mi is a pixel with maximum intensity over the path γi, i.e.

I(mi) = max{I(y) : y ∈ γi({1, . . . , li})}. (6)

Equation (5) expresses the lightness at each point as the average of the ratios
between the intensity at x and a local maximum, that becomes the local white
reference (see Chap. 33 in [27]).

The color filtering algorithms of the Milano Retinex class differ to each other
in the way the spatial analysis is performed. The different spatial color sampling
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Fig. 5. Examples of spatial color sampling of an input image (left) performed by the
Milano Retinex approaches ETR (middle) and RSR (right) on the red channel of
the input. This samples are around the barycenter of the image support (indicated
respectively by a red, filled circle in the middle picture, and by a blue, empty circle in
the right picture. (Color figure online)

procedures of this family can be categorized in path-based, 2D, and probabilistic
approaches.

Examples of Path-Based Milano Retinex Spatial Color Sampling. The
works in [26,31] are the pioneer Milano Retinex approaches. The spatial sampling
is performed in the first one by lines, and in the second one by Brownian paths.

Image aware paths have been recently introduced by the methods Termite
Retinex (TR) [39], Energy-driven Termite Retinex (ETR) [24] and its light ver-
sion Light-ETR [40]. The approaches are of interest because they explicitly model
the importance of the edges in color sensation. In fact, in these methods, the
paths are not randomly selected over the image nor constrained a priori by geo-
metric features (e.g. for instance, they are not lines), but they are built up so

Fig. 6. Examples of color enhancement performed by some algorithms of the Milano
Retinex family. (A) Input image and outputs of (B) TR, (C) ETR, (D) RSR,
(E) QBRIX (distance-weighted version).
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that to adhere as much as possible to the edges of each image color channel.
Specifically, the paths are thought as the traces of termites (i.e. white ants),
each of them exiting one after the other from the nest (i.e. the target) in search
for a local white reference (i.e. a pixel with the maximum intensity over the
path).

In TR, each path is determined by a sort of contrast follower, that starts from
the target and proceeds pixel by pixel by maximizing a function f proportionally
to the contrast value and to the squared Euclidean distance between adjacent
pixels. The distance term was introduced to spread the termite swarm across
the image in order to take into account the color spatial distribution accurately.
A penalty term is introduced to avoid the over-exploration of the image, so that
f decreases over pixels already traveled by a termite.

ETR inherits from TR the general, swarm-inspired exploration scheme, but
it computes each termite route as the local minimum of an energy functional,
designed to favor the visit of pixels having high gradient magnitude, with the
preference for pixels close to the target and never traveled before. Differently
from the Brownian path scanning and from TR, ETR provides a global math-
ematical condition for describing the paths. The computational issues of ETR
have been analyzed in [40], which presents an approximated, computationally
more efficient version of ETR. Figure 5 (middle) shows an example of ETR spatial
exploration: flat regions are explored less than the others. TR exhibits a similar
behaviour, but its paths become random over image areas with null values of
f . In this respect, ETR provides a more deterministic procedure to compute a
path connecting two pixels.

The number of the paths and the penalty value are user inputs. TR also
requires a value for the maximum length of the path.

Examples of 2D Milano Retinex Spatial Color Sampling. Random Spray
Retinex (RSR) [? ] replaces the path based exploration scheme with a 2D sam-
pling, leading to a faster computation of the lightness. This new scheme has been
introduced mainly to solve some problems of the path-based sampling, mainly
related to the redundancy of the information collected by random paths and to
the chromatic noise due to their randomness. For each chromatic channel, RRS
scans the neighborhood of each target x by a 2D set of random pixels randomly
selected around x from a radial distribution, according to the fact that the col-
ors of the pixels closest to x influence more its color sensation than those of the
pixels located far away. The lightness at x is computed as the ratio between the
intensity I(x) and the maximum intensity over the spray. The chromatic noise
due to the random samples is reduced by generating many sprays. The final
lightness is obtained as the average value of the lightnesses computed over each
spray. The numbers of sprays and the number of samples per sprays are input
user.

Many different versions of RSR have been published. In particular the works
in [1,2] propose computationally more efficient implementations of RSR. An
example of RSR sampling is reported in Fig. 5 (right).
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Examples of Probabilistic Milano Retinex Spatial Color Sampling. The
works QBRIX [12] and RSR-P [10] present respectively a probabilistic approx-
imation and an exact formulation of RSR. These last two methods avoid the
random sampling and thus output an image free of chromatic noise.

QBRIX (from Quantile-Based approach to RetIneX) relies on the fact that
the color sensation at any image pixel is poorly influenced by (1) colors rarely
occurring in the image and (2) colors of pixel located far from. Issues (1) and
(2) lead to two different implementations of QBRIX. Both of them computes the
lightness at any pixel of any color channel as the intensity level of a quantile,
that the user selects on the probability density fucntion (pdf) of the channel
intensities. The first implementation does not use any information about the
spatial arrangement of the color, while the second one accounts for this informa-
tion by weighting the contributions of the channel intensities to the pdf through
a function of the distance of the pixels from the target. Thus, this “spatially
weighted intensity pdf” must be re-computed for any pixel.

RSR-P (where P stands for Population) is an exact mapping of RSR in to a
population based approach, that completely avoids the random sampling and the
related chromatic noise. It bases on the estimation of the probability to sample,
around each target, n pixels with intensity higher than that of the target and
radially distributed around the target. In this framework, RSR results to be an
approximated version of RSR-P.

Figure 6 shows some examples of color enhancement provided by some algo-
rithms of this family. In particular, the results obtained by RSR-P and by the
first implementation of QBRIX are omitted respectively for the high similarity
with RSR and for the distance-free color processing that is not in line with the
spatial principles of Retinex.

As visible from this figure, all these algorithms produce a new, enhanced
image, where the details are more visible and the mean image brightness is
higher. The path-based approaches perform similarly, and provide a better con-
trast enhancement in the dark areas with respect to the 2D and probabilistic
methods.

The difference between the path-based methods and the others are mainly
due to the different ways to spatially explore each target neighborhood. These
examples point out the importance of the spatial exploration scheme. The use
of this or that method depends on the applications, that can be to improve the
global or local image visibility, to remove a color cast due to the illuminant or
simply making a picture more pleasant.

4 Conclusions

Despite developed many years ago, Retinex is still an attractive research field,
as proved by the wide range of recent conferences and publications on it. The
Retinex theory nurtured the first mathematical model of the human color sensa-
tion and is nowaday inspiring new advanced efforts both in biology and computer
vision.
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2. Banić, N., Lončarić, S.: Smart light random memory sprays retinex: a fast retinex
implementation for high-quality brightness adjustment and color correction. JOSA
A 32(11), 2136–2147 (2015)

3. Barlow, H.B.: Summation and inhibition in the frog’s retina. J. Physiol. 119(1),
69 (1953)

4. Ciocca, G., Marini, D., Rizzi, A., Schettini, R., Zuffi, S.: Retinex preprocessing of
uncalibrated images for color-based image retrieval. J. Electron. Imaging 12(1),
161–172 (2003)

5. Creutzfeldt, O., Lange-Malecki, B., Wortmann, K.: Darkness induction, retinex
and cooperative mechanisms in vision. Exp. Brain Res. 67(2), 270–283 (1987)

6. Daw, N.W.: Goldfish retina: organization for simultaneous color contrast. Science
158(3803), 942–944 (1967)

7. De Valois, R.L., De Valois, K.K.: Spatial vision. Ann. Rev. Psychol. 31(1), 309–341
(1980)

8. De Valois, R.L., Morgan, H., Snodderly, D.M.: Psychophysical studies of mon-
key vision-iii. spatial luminance contrast sensitivity tests of macaque and human
observers. Vision Res. 14(1), 75–81 (1974)

9. Dowling, J.E.: The Retina: An Approachable Part of the Brain. Harvard University
Press (1987)

10. Gabriele, G., Lecca, M., Rizzi, A.: A population-based approach to point-sampling
spatial color algorithms. J. Opt. Soc. Am. A 33(12), 2396–2413 (2016)

11. Geusebroek, J.-M., van den Boomgaard, R., Smeulders, A.W.M., Gevers, T.: Color
constancy from physical principles. Pattern Recogn. Lett. 24(11), 1653–1662 (2003)

12. Gianini, G., Manenti, A., Rizzi, A.: Qbrix: a quantile-based approach to retinex.
JOSA A 31(12), 2663–2673 (2014)

13. Hanumantharaju, M.C., Ravishankar, M., Rameshbabu, D.R., Ramachandran, S.:
Color image enhancement using multiscale retinex with modified color restoration
technique. In: 2nd Conference on Emerging Applications of Information Technology
(EAIT), pp. 93–97. IEEE (2011)

14. Islam, A., Farup, I.: Enhancing the output of spatial color algorithms. In: 2nd
European Workshop on Visual Information Processing (EUVIP), pp. 7–12. IEEE
(2010)

15. Jang, J.H., Kim, S.D., Ra, J.B.: Enhancement of optical remote sensing images
by subband-decomposed multiscale retinex with hybrid intensity transfer function.
IEEE Geosci. Remote Sens. Lett. 8(5), 983–987 (2011)

16. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap
between color images and the human observation of scenes. IEEE Trans. Image
Process. 6(7), 965–976 (1997)

17. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a cen-
ter/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

18. Kol̊as, Ø., Farup, I., Rizzi, A.: Spatio-temporal retinex-inspired envelope with sto-
chastic sampling a framework for spatial color algorithms. J. Imaging Sci. Technol.
55(4), 40503-1–40503-10 (2011)

19. Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina.
J. Neurophysiol. 16(1), 37–68 (1953)

20. Land, E.: Recent advances in retinex theory (1985)



38 M. Lecca

21. Land, E.H.: An alternative technique for the computation of the designator in
the retinex theory of color vision. Proc. Nat. Acad. Sci. U.S.A. 83(10), 3078–3080
(1986)

22. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Optical Soc. Am. 1,
1–11 (1971)

23. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–128 (1977)
24. Lecca, M., Rizzi, A., Gianini, G.: Energy-driven path search for termite retinex. J.

Opt. Soc. Am. A 33, 1 (2016)
25. Lu, H., Yang, S., Zhang, H., Zheng, Z.: A robust omnidirectional vision sensor for

soccer robots. Mechatronics 21(2), 373–389 (2011)
26. Marini, D., Rizzi, A.: Colour constancy and optical illusions: a computer simula-

tion with Retinex theory. In: Proceeding of ICIAP, pp. 657–660, Monopoli, Italy,
September 1993

27. McCann, J., Rizzi, A.: The Art and Science of HDR Imaging. Wiley (2011)
28. McCann, J.J.: Retinex algorithms: many spatial processes used to solve many

different problems. Electron. Imaging 2016(6), 1–10 (2016)
29. McCann, J.J., Savoy, R.: Measurements of lightness: dependence on the position

of a white in the field of view. In: Electronic Imaging 1991, San Jose, CA, pp.
402–411. International Society for Optics and Photonics (1991)

30. McCann, J.J., McKee, S.P., Taylor, T.H.: Quantitative studies in retinex theory
a comparison between theoretical predictions and observer responses to the color
mondrian experiments. Vision Res. 16(5), 445–IN3 (1976)

31. Montagna, R., Finlayson, G.D.: Constrained pseudo-Brownian motion and its
application to image enhancement. J. Opt. Soc. Am. A 28(8), 1677–1688 (2011)

32. Optical Society of America: Committee on Colorimetry. The Science of Color.
Crowell, New York (1953)

33. Provenzi, E., De Carli, E., Rizzi, A., Marini, D.: Mathematical definition and analy-
sis of the Retinex algorithm. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(12),
2613–2621 (2005)

34. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random
spray retinex: a new Retinex implementation to investigate the local properties of
the model. Trans. Img. Proc. 16(1), 162–171 (2007)

35. Rahman, Z., Jobson, D.J., Woodell, G.A.: A multiscale retinex for color rendition
and dynamic range compression. In: SPIE International Symposium on Optical Sci-
ence, Engineering and Instrumentation, Applications of Digital Image Processing
XIX, vol. 2847, pp. 183–191 (1996)

36. Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image
enhancement. J. Electron. Imaging 13(1), 100–110 (2004)

37. Rahman, Z., Woodell, G.A., Jobson, D.J.: Retinex image enhancement: application
to medical images. In: NASA Workshop on New Partnerships in Medical Diagnostic
Imaging (2001)

38. Schettini, R., Ciocca, G., Zuffi, S., et al.: A survey of methods for colour image
indexing and retrieval in image databases. In: Color Imaging Science: Exploiting
Digital Media, pp. 183–211 (2001)

39. Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite Retinex: a
new implementation based on a colony of intelligent agents. J. Electron. Imaging
23(1), 013006-1–013006-13 (2014)

40. Simone, G., Cordone, R., Lecca, M., Serapioni, R.P.: On Edge-aware path-based
color spatial sampling for retinex: from Termite Retinex to light-energy driven
Termite Retinex. J. Electron. Imaging (to appear). Special Issue, Retinex at 50



Color Vision Is a Spatial Process: The Retinex Theory 39

41. Vázquez, S.G., Barreira, N., Penedo, M.G., Saez, M., Pose-Reino, A.: Using retinex
image enhancement to improve the artery/vein classification in retinal images. In:
Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6112, pp. 50–59. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13775-4 6

http://dx.doi.org/10.1007/978-3-642-13775-4_6

	Color Vision Is a Spatial Process: The Retinex Theory
	1 Introduction
	2 The Original Retinex Algorithm
	2.1 The Experiments
	2.2 The Algorithm

	3 Alternative Spatial Color Sampling: Examples from Milano Retinex Family
	4 Conclusions
	References


