Skip to main content

Tree-Encoded Conditional Random Fields for Image Synthesis

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

Magnetic resonance imaging (MRI) is the dominant modality for neuroimaging in clinical and research domains. The tremendous versatility of MRI as a modality can lead to large variability in terms of image contrast, resolution, noise, and artifacts. Variability can also manifest itself as missing or corrupt imaging data. Image synthesis has been recently proposed to homogenize and/or enhance the quality of existing imaging data in order to make them more suitable as consistent inputs for processing. We frame the image synthesis problem as an inference problem on a 3-D continuous-valued conditional random field (CRF). We model the conditional distribution as a Gaussian by defining quadratic association and interaction potentials encoded in leaves of a regression tree. The parameters of these quadratic potentials are learned by maximizing the pseudo-likelihood of the training data. Final synthesis is done by inference on this model. We applied this method to synthesize \(T_2\)-weighted images from \(T_1\)-weighted images, showing improved synthesis quality as compared to current image synthesis approaches. We also synthesized Fluid Attenuated Inversion Recovery (FLAIR) images, showing similar segmentations to those obtained from real FLAIRs. Additionally, we generated super-resolution FLAIRs showing improved segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bland, J.M., Altman, D.G.: Statistical Methods For Assessing Agreement Between Two Methods Of Clinical Measurement. The Lancet 327(8476), 307–310 (1986)

    Article  Google Scholar 

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth Publishing Company, U.S.A (1984)

    MATH  Google Scholar 

  3. Burgos, N., Cardoso, M.J., Modat, M., Pedemonte, S., Dickson, J., Barnes, A., Duncan, J.S., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Attenuation correction synthesis for hybrid PET-MR scanners. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 147–154. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Evans, A., Collins, D., Mills, S., Brown, E., Kelly, R., Peters, T.: 3D Statistical Neuroanatomical Models from 305 MRI volumes. In: Nuclear Science Symposium and Medical Imaging Conference, vol. 3, pp. 1813–1817 (1993)

    Google Scholar 

  5. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image Analogies. Proceedings of SIGGRAPH 2001, 327–340 (2001)

    Google Scholar 

  6. Iglesias, J.E., Konukoglu, E., Zikic, D., Glocker, B., Van Leemput, K., Fischl, B.: Is synthesizing MRI contrast useful for inter-modality analysis? In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 631–638. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Jancsary, J., Nowozin, S., Sharp, T., Rother, C.: Regression Tree Fields; An Efficient, Non-parametric Approach to Image Labeling Problems. In: CVPR, 2376–2383 (2012)

    Google Scholar 

  8. Jog, A., Roy, S., Carass, A., Prince, J.L.: Magnetic Resonance Image Synthesis through Patch Regression. In: \(10^{\rm th}\) International Symposium on Biomedical Imaging (ISBI 2013), pp. 350–353 (2013)

    Google Scholar 

  9. Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vision 68(2), 179–201 (2006)

    Article  Google Scholar 

  10. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML 2001, pp. 282–289 (2001)

    Google Scholar 

  11. Landman, B.A., Huang, A.J., Gifford, A., Vikram, D.S., Lim, I.A.L., Farrell, J.A.D., Bogovic, J.A., Hua, J., Chen, M., Jarso, S., Smith, S.A., Joel, S., Mori, S., Pekar, J.J., Barker, P.B., Prince, J.L., van Zijl, P.: Multi-parametric neuroimaging reproducibility: a 3-T resource study. NeuroImage 54(4), 2854–2866 (2011)

    Article  Google Scholar 

  12. Miller, M.I., Christensen, G.E., Amit, Y., Grenander, U.: Mathematical textbook of deformable neuroanatomies. Proc. Natl. Acad. Sci. 90(24), 11944–11948 (1993)

    Article  MATH  Google Scholar 

  13. Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imag. 19(2), 143–150 (2000)

    Article  Google Scholar 

  14. Rousseau, F.: Brain hallucination. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 497–508. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Roy, S., Carass, A., Prince, J.L.: Magnetic resonance image example based contrast synthesis. IEEE Trans. Med. Imag. 32(12), 2348–2363 (2013)

    Article  Google Scholar 

  16. Shiee, N., Bazin, P.L., Ozturk, A., Reich, D.S., Calabresi, P.A., Pham, D.L.: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49(2), 1524–1535 (2010)

    Article  Google Scholar 

  17. Tappen, M., Liu, C., Adelson, E., Freeman, W.: Learning gaussian conditional random fields for low-level vision. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  18. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    MATH  Google Scholar 

  19. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Proc. Letters 9(3), 81–84 (2002)

    Article  Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Member, S., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amod Jog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jog, A., Carass, A., Pham, D.L., Prince, J.L. (2015). Tree-Encoded Conditional Random Fields for Image Synthesis. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics