Skip to main content

Abstract

We present a Bayesian scheme for the downscaling of daily rainfall over a network of stations. Rainfall is modeled locally as a state-dependent mixture, with the states progressing in time as a first-order Markov process. The Markovian transition matrix, as well as the local state distributions, are dependent on exogenous covariates via generalized linear models (GLMs). The methodology is applied to a large network of stations spanning the Indian subcontinent and extending into the proximal Himalaya. The combined GLM-NHMM approach offers considerable flexibility and can also be applied to maximum and minimum temperatures. The modeling framework has been made available in the NHMM package for the R programming language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert JH, Chib S (1993) Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc 88(422):669–679

    Article  Google Scholar 

  • Ashrit RG, Kumar KR, Kumar KK (2001) ENSO-monsoon relationships in a greenhouse warming scenario. Geophys Res Lett 28(9):1727–1730. doi:10.1029/2000GL012489

    Article  Google Scholar 

  • Bellone E, Hughes JP, Guttorp P (2000) A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Clim Res 15:1–12

    Article  Google Scholar 

  • Charles SP, Bates BC, Hughes JP (1999) A spatiotemporal model for downscaling precipitation occurrence and amounts. J Geophys Res 104(D24):31657–31669

    Article  Google Scholar 

  • Gelman A, Carlin B, Stern H, Rubin D (2004) Bayesian data analysis. Chapman and Hall, New York

    Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter D (eds) (1996) Markov Chain Monte Carlo In Practice, 1st edn. Interdisciplinary Statistics, book 2. Chapman and Hall/CRC, London

    Google Scholar 

  • Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Soc 102:359–378

    Article  Google Scholar 

  • Greene AM, Robertson AW, Kirshner S (2008) Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time-scales using a hidden Markov model. Q J R Meteorol Soc 134(633):875–887

    Article  Google Scholar 

  • Greene AM, Robertson AW, Smyth P, Triglia S (2011) Downscaling projections of the Indian monsoon rainfall using a non-homogeneous hidden Markov model. Q J R Meteorol Soc 137(B):347–359

    Article  Google Scholar 

  • Hughes JP, Guttorp P, Charles SP (1999) A non-homogeneous hidden Markov model for precipitation occurrence. J R Stat Soc Ser C Appl Stat 48(1):15–30

    Article  Google Scholar 

  • Kallache M, Vrac M, Naveau P, Michelangeli PA (2011) Nonstationary probabilistic downscaling of extreme precipitation. J Geophys Res 116(D5). doi:10.1029/2010JD014892

    Google Scholar 

  • Kirshner S, Smyth P, Robertson A (2012) Conditional Chow-Liu tree structures for modeling discrete-valued vector time series. Comp Res Repos. abs/1207.4142, http://arxiv.org/abs/1207.4142

  • Ledolter J (2013) Multinomial logistic regression. Wiley, pp 132–149. doi:10.1002/9781118596289.ch11

    Google Scholar 

  • Moron V, Robertson AW, Ward MN, Camberlin P (2007) Spatial coherence of tropical rainfall at the regional scale. J Clim 20(21):5244–5263

    Article  Google Scholar 

  • NCDC (2002) Data documentation for dataset 9618, Global Summary of the Day. Technical report, National Climatic Data Center (NCDC), National Oceanic and Atmospheric Administration (NOAA). Available online at http://www4.ncdc.noaa.gov/ol/documentlibrary/datasets.html

  • Neal R (1997) Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Technical report 9702, University of Toronto

    Google Scholar 

  • Polson NG, Scott JG, Windle J (2013) Bayesian inference for logistic models using pólya gamma latent variables. J Am Stat Assoc 108(504):1339–1349. doi:10.1080/01621459.2013.829001

    Article  Google Scholar 

  • Riihimaki J, Jylanki P, Vehtari A (2013) Nested expectation propagation for gaussian process classification with a multinomial probit likelihood. J Mach Learn Res 14:75–109

    Google Scholar 

  • Robertson AW, Moron V, Swarinoto Y (2009) Seasonal predictability of daily rainfall statistics over Indramayu district, Indonesia. Int J Climatol 29:1449–1462

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of el niño. Bull Am Meteorol Soc 78(12):2771–2777. doi:10.1175/1520-0477(1997)078 < 2771:TDOENO > 2.0.CO;2

    Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80(4):629–638

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy grant DE-SC0006616, as 563 part of the Earth System Modeling (EaSM) multi-agency initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Greene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Greene, A.M., Holsclaw, T., Robertson, A.W., Smyth, P. (2015). A Bayesian Multivariate Nonhomogeneous Markov Model. In: Lakshmanan, V., Gilleland, E., McGovern, A., Tingley, M. (eds) Machine Learning and Data Mining Approaches to Climate Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17220-0_6

Download citation

Publish with us

Policies and ethics